À propos de cet article

Citez

[1] United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations; 2019. Available from: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf. Search in Google Scholar

[2] Kyakuno T. Prediction of land use changes with Bayesian spatial modeling from the perspective of urban climate. Urban Climate. 2020;31:100569. DOI: 10.1016/j.uclim.2019.100569.10.1016/j.uclim.2019.100569 Search in Google Scholar

[3] Homer C, Dewitz J, Jin S, Xian G, Costello C, Danielson P, et al. Conterminous United States land cover change patterns 2001-2016 from the 2016 National Land Cover Database. ISPRS J Photogrammetry Remote Sensing. 2020;162:184-99. DOI: 10.1016/j.isprsjprs.2020.02.019.10.1016/j.isprsjprs.2020.02.019 Search in Google Scholar

[4] Islam K, Rahman F, Jashimuddin M. Modeling land use change using Cellular Automata and Artificial Neural Network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol Indicators. 2018;88:439-53. DOI: 10.1016/j.ecolind.2018.01.047.10.1016/j.ecolind.2018.01.047 Search in Google Scholar

[5] He Y, Zhang D, Huang X, Zhao Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ Modelling Software. 2016;75:44-58. DOI: 10.1016/j.envsoft.2015.09.015.10.1016/j.envsoft.2015.09.015 Search in Google Scholar

[6] Yu W, Zhang Y, Zhou W, Wang W, Tang R. Urban expansion in Shenzhen since 1970s: A retrospect of change from a village to a megacity from the space. Phys Chem Earth. 2019;110:21-30. DOI: 10.1016/j.pce.2019.02.006.10.1016/j.pce.2019.02.006 Search in Google Scholar

[7] Wang Ch, Wang Y, Wang R, Zheng P. Modeling and evaluating land-use/land-cover change for urban planning and sustainability: A case study of Dongying city, China. J Cleaner Prod. 2018;172:1529-34. DOI: 10.1016/j.jclepro.2017.10.294.10.1016/j.jclepro.2017.10.294 Search in Google Scholar

[8] Zhou W, Zhang S, Yu W, Wang J, Wang W. Effects of urban expansion on forest loss and fragmentation in six megaregions, China. Remot Sens. 2017;9:991. DOI: 10.3390/rs9100991.10.3390/rs9100991 Search in Google Scholar

[9] Salvati L, Lamonica G. Containing urban expansion: Densification vs greenfield development, sociodemographic transformations and the economic crisis in a Southern European City, 2006-2015. Ecol Indicators. 2020;110,105923. DOI: 10.1016/j.ecolind.2019.105923.10.1016/j.ecolind.2019.105923 Search in Google Scholar

[10] Chen Sh, Feng Y, Tong X, Liu S, Xie H, Gao Ch, et al. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Sci Total Environ. 2020;712,136509. DOI: 10.1016/j.scitotenv.2020.136509.10.1016/j.scitotenv.2020.13650931931202 Search in Google Scholar

[11] Zhou L, Dang X, Sun Q, Wang Sh. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sust Cities Society. 2020;55:102045. DOI: 10.1016/j.scs.2020.102045.10.1016/j.scs.2020.102045 Search in Google Scholar

[12] Karimi Firozjaei M, Sedighi A, Argany M, Jelokhani-Niaraki M, Jokar Arsanjani J. A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities. 2019;93:120-35. DOI: 10.1016/j.cities.2019.05.001.10.1016/j.cities.2019.05.001 Search in Google Scholar

[13] Mirbagheri B, Alimohammadi A. Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Trans GIS. 2017;21:6. DOI: 10.1111/tgis.12278.10.1111/tgis.12278 Search in Google Scholar

[14] Zhong S, Qian Y, Chandan Z, Chun L, Ruby W, Hailong Y, et al. Urbanization effect on winter haze in the Yangtze River Delta region of China. Geophys Res Lett. 2018;13:6710-8. DOI: 10.1029/2018GL077239.10.1029/2018GL077239 Search in Google Scholar

[15] Son N, Chen C, Chen C. Urban expansion and its impacts on local temperature in San Salvador, El Salvador. Urban Climate. 2020;32,100617. DOI: 10.1016/j.uclim.2020.100617.10.1016/j.uclim.2020.100617 Search in Google Scholar

[16] Luo K, Hu X, He Q, Wu Z, Cheng H, Hu Z, et al. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China. Sci Total Environ. 2018;621:1601-14. DOI: 10.1016/j.scitotenv.2017.10.068.10.1016/j.scitotenv.2017.10.06829054671 Search in Google Scholar

[17] Xie H, Zhang Y, Duan K. Evolutionary overview of urban expansion based on bibliometric analysis in Web of Science from 1990 to 2019. Habitat Int. 2020;95:102100. DOI: 10.1016/j.habitatint.2019.102100.10.1016/j.habitatint.2019.102100 Search in Google Scholar

[18] Huang Z, Wei Y, He C, Li H. Urban land expansion under economic transition in China: A multi-level modeling analysis. Habitat Int. 2015;47:69-82. DOI: 10.1016/j.habitatint.2015.01.007.10.1016/j.habitatint.2015.01.007 Search in Google Scholar

[19] Mohammad A, Worku H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate. 2020;31:100545. DOI: 10.1016/j.uclim.2019.100545.10.1016/j.uclim.2019.100545 Search in Google Scholar

[20] Romano G, Abdelwahab O, Gentile F. Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena. 2018;163:342-53. DOI: 10.1016/j.catena.2017.12.039.10.1016/j.catena.2017.12.039 Search in Google Scholar

[21] Xu T, Gao J. Directional multi-scale analysis and simulation of urban expansion in Auckland, New Zealand using logistic cellular automata. Computers, Environ Urban Systems. 2019;78:101390. DOI: 10.1016/j.compenvurbsys.2019.101390.10.1016/j.compenvurbsys.2019.101390 Search in Google Scholar

[22] Zhang J, Hao Y, Hu B, Huo X, Hao P, Liu Z. The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China. Clim Dynam. 2017;48:53-70. DOI: 10.1007/s00382-016-3062-2.10.1007/s00382-016-3062-2 Search in Google Scholar

[23] Huilei L, Jian P, Yanxu L, Yina H. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective, Ecol Indicators. 2017;82:50-60. DOI: 10.1016/j.ecolind.2017.06.032.10.1016/j.ecolind.2017.06.032 Search in Google Scholar

[24] Nong D, Lepczyk C, Miura T, Fox J. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics. PLoS ONE. 2018;13(5):e0196940. DOI: 10.1371/journal.pone.0196940.10.1371/journal.pone.0196940593778729734346 Search in Google Scholar

[25] Sun X, Crittenden J, Li F, Lu Z, Dou X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci Total Environ. 2018;622-623;974-87. DOI: 10.1016/j.scitotenv.2017.12.062.10.1016/j.scitotenv.2017.12.06229890614 Search in Google Scholar

[26] Armenteras D, Murcia U, Gonzalez T, Baron O, Arias J. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecol Conserv. 2019;17:e00567. DOI: 10.1016/j.gecco.2019.e00567.10.1016/j.gecco.2019.e00567 Search in Google Scholar

[27] Tong L, Hu Sh, Frazier A. Hierarchically measuring urban expansion in fast urbanizing regions using multidimensional metrics: A case of Wuhan metropolis, China. Habitat Int. 2019;94:102070. DOI: 10.1016/j.habitatint.2019.102070.10.1016/j.habitatint.2019.102070 Search in Google Scholar

[28] Yang Y, Zhang D, Nan Y, Liu Zh, Zheng W. Modeling urban expansion in the transnational area of Changbai Mountain: A scenario analysis based on the zoned land use scenario dynamics-urban model. Sust Cities Soc. 2019;50:101622. DOI: 10.1016/j.scs.2019.101622.10.1016/j.scs.2019.101622 Search in Google Scholar

[29] Dadashpoor H, Salarian F. Urban sprawl on natural lands: Analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran. Environ Development Sust. 2018;22:593-614. DOI: 10.1007/s10668-018-0211-2.10.1007/s10668-018-0211-2 Search in Google Scholar

[30] Bonilla-Bedoya S, Mora A, Vaca A, Estrella A, Ángel Herrera M. Modelling the relationship between urban expansion processes and urban forest characteristics: An application to the Metropolitan District of Quito. Computers, Environ Urban Systems. 2020;79:101420. DOI: 10.1016/j.compenvurbsys.2019.101420.10.1016/j.compenvurbsys.2019.101420 Search in Google Scholar

[31] Yang J, LI Sh, Xu J, Wang X, Zhang X. Effects of changing scales on landscape patterns and spatial modeling under urbanization. J Environ Eng Landscape Manage. 2020;28(2): 62-73. DOI: 10.3846/jeelm.2020.12081.10.3846/jeelm.2020.12081 Search in Google Scholar

[32] Basse RM, Omrani H, Charif O, Gerber P, Bodis K. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geography. 2014;53:160-71. DOI: 10.1016/j.apgeog.2014.06.016.10.1016/j.apgeog.2014.06.016 Search in Google Scholar

[33] Ansari A, Golabi M. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands - A case study: Meighan Wetland, Iran. Int Soil Water Conserv Res. 2019;7,64-70. DOI: 10.1016/j.iswcr.2018.10.001.10.1016/j.iswcr.2018.10.001 Search in Google Scholar

[34] Silva L, Xavier A, Silva R, Santos G. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecol Conserv. 2020;21:e008112019. DOI: 10.1016/j.gecco.2019-00811. Search in Google Scholar

[35] Isik S, Kalin L, Schoonover J, Srivastava P, Lockaby G. Modeling effects of changing land use/cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach. J Hydrol. 2013;485:103-12. DOI: 10.1016/j.jhydrol.2012.08.032.10.1016/j.jhydrol.2012.08.032 Search in Google Scholar

[36] Taraškevičius R, Motiejūnaitė G, Zinkutė R, Eigminienė A, Gedminienė L, Stankevičius Z. Similarities and differences in geochemical distribution patterns in epiphytic lichens and topsoils from kindergarten grounds in Vilnius. J Geochem Explor. 2017;183:152-65. DOI: 10.1016/j.gexplo.2017.08.013.10.1016/j.gexplo.2017.08.013 Search in Google Scholar

[37] Geological Survey. Geological Survey Download GLOVIS. Available from: https://glovis.usgs.gov, Accessed 29th Dec 2019. Search in Google Scholar

[38] Mancino G, Ferrara A, Padula A, Nolè A. Cross-Comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote Sensing. 2020;12:291. DOI: 10.3390/rs12020291.10.3390/rs12020291 Search in Google Scholar

[39] Samardžic-Petrovic M, Kova¡cevic M, Bajat B, Dragi’cevic S. Machine learning techniques for modelling short term land-use change. ISPRS Int J Geology-Information. 2017;6:387. DOI: 10.3390/ijgi6120387.10.3390/ijgi6120387 Search in Google Scholar

[40] Heydari S, Mountrakis G. Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal classification to support vector machines. ISPRS J Photogrammetry Remote Sensing. 2019;152:192-210. DOI: 10.1016/j.isprsjprs.2019.04.016.10.1016/j.isprsjprs.2019.04.016 Search in Google Scholar

[41] Karimi F, Sultana S, Shirzadi Babakan A, Suthaharan Sh. An enhanced support vector machine model for urban expansion prediction. Computers, Environ Urban Systems. 2019;75:61-75. DOI: 10.1016/j.compenvurbsys.2019.01.001.10.1016/j.compenvurbsys.2019.01.001 Search in Google Scholar

[42] Santana EF, Vidal Batista L, Silva RM, Santos CA. Multispectral image unsupervised segmentation using watershed transformation and cross-entropy minimization in different land use. GIScience Remote Sensing. 2014;51(6):613-29. DOI: 10.1080/15481603.2014.980095.10.1080/15481603.2014.980095 Search in Google Scholar

[43] Roohi R, Jafari M, Jahantab E, Saffari Aman M, Moameri M, Zare S. Application of artificial neural network model for the identification the effect of municipal waste compost and biochar on phytoremediation of contaminated soils. J Geochem Exploration. 2020;208:106399. DOI: 10.1016/j.gexplo.2019.106399.10.1016/j.gexplo.2019.106399 Search in Google Scholar

[44] Ray A, Halder T, Jena S, Sahoo A, Ghosh B, Mohanty S, et al. Application of artificial neural network (ANN) model for prediction and optimization of coronarin D content in Hedychium coronarium. Industrial Crops Products. 2020;146:112186. DOI: 10.1016/j.indcrop.2020.112186.10.1016/j.indcrop.2020.112186 Search in Google Scholar

[45] Liu X, Zhu X, Zhang Q, Yang T, Pan Y, Sun P. A remote sensing and artificial neural network-based integrated agricultural drought index: Index development and applications. Catena. 2020;186:104394. DOI: 10.1016/j.catena.2019.104394.10.1016/j.catena.2019.104394 Search in Google Scholar

[46] Thangavel R, Kanchikerimath M, Sudharsanam A, Ayyanadar A, Karunanithi R, Deshmukh N, et al. Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: Impact of land use change in subtropical India (Meghalaya). Ecol Indicators. 2020;93:129-41. DOI: 10.1016/j.ecolind.2018.04.077.10.1016/j.ecolind.2018.04.077 Search in Google Scholar

[47] Nasiri V, Darvishsefat A, Rafiee R, Shirvany A, Hemat M. Land use change modeling through an integrated Multi-Layer Perceptron Neural Network and Markov Chain analysis (case study: Arasbaran region, Iran). J Forestry Res. 2018;30(3):943-57. DOI: 10.1007/s11676-018-0659-9.10.1007/s11676-018-0659-9 Search in Google Scholar

[48] Shooshtarian M, Dehghani M, Margherita F, Gea O, Mortezazadeh Sh. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models. Food Chem Toxicol. 2019;114:204-14. DOI: 10.1016/j.fct.2018.02.025.10.1016/j.fct.2018.02.02529453994 Search in Google Scholar

[49] Hamdy O, Zhao S, Salheen M, Eid Y. Analyses the driving forces for urban growth by using IDRISI Selva Models Abouelreesh - Aswan as a case study. Int J Eng Technol. 2017;9(3):226-32. DOI: 10.7763/IJET.2017.V9.975.10.7763/IJET.2017.V9.975 Search in Google Scholar

[50] Zarandian A, Baral H, Stork N, Ling M, Yavari A, Jafari H, et al. Modeling of ecosystem services informs spatial planning in landsadjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy. 2017;61:487-500. DOI: 10.1016/j.landusepol.2016.12.003.10.1016/j.landusepol.2016.12.003 Search in Google Scholar

[51] Su S, Xiao R, Jiang Z, Zhang Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr. 2012;34:295-305. DOI: 10.1016/j.apgeog.2011.12.001.10.1016/j.apgeog.2011.12.001 Search in Google Scholar

[52] You H. Agricultural landscape dynamics in response to economic transition: comparisons between different spatial planning zones in Ningbo region, China. Land Use Policy. 2017;61:316-28. DOI: 10.1016/j.landusepol.2016.11.025.10.1016/j.landusepol.2016.11.025 Search in Google Scholar

[53] Wu K, Ye X, Qi Z, Zhang H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: the case of fast-growing Hangzhou metropolitan area, China. Cities. 2013;31:276-84. DOI: 10.1016/j.cities.2012.08.003.10.1016/j.cities.2012.08.003 Search in Google Scholar

[54] Long H, Liu Y, Hou X, Li T, Li Y. Effects of land use transitions due to rapid urbanization on ecosystem services: implications for urban planning in the new developing area of China. Habitat Int. 2014;44:536-44. DOI: 10.1016/j.habitatint.2014.10.011.10.1016/j.habitatint.2014.10.011 Search in Google Scholar

[55] Tripathi R, Moharana K, Nayak A, Dhal B, Shahid M, Mondal B, et al. Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change. Environ Monit Assess. 2019;191(2):98. DOI: 10.1007/s10661-019-7224-7.10.1007/s10661-019-7224-730675638 Search in Google Scholar

[56] Almeida D, Rocha J, Neto C, Arsénio P. Landscape metrics applied to formerly reclaimed saltmarshes: A tool to evaluate ecosystem services? Estuarine, Coastal Shelf Sci. 2016;181:100-13. DOI: 10.1016/j.ecss.2016.08.020.10.1016/j.ecss.2016.08.020 Search in Google Scholar

[57] Hassan MM. Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society Environ. 2017;7:69-83. DOI: 10.1016/j.rsase.2017.07.001.10.1016/j.rsase.2017.07.001 Search in Google Scholar

[58] Forman R. Urban Ecology: Science of Cities. Cambridge University Press; 2014. ISBN: 9780521188241 DOI: 10.5860/choice.190738.10.5860/CHOICE.190738 Search in Google Scholar

[59] McGarigal K. Fragstats Help. Amherst: University of Massachusetts. USA; 2015. ISBN: 6450061768432. DOI: umass.edu/landeco/research/fragstats/fragstats.html. Search in Google Scholar

eISSN:
2084-4549
Langue:
Anglais