À propos de cet article

Citez

[1] Nishihama S, Onishi K, Yoshizuka K. Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extract Ion Exchange. 2011:29(3):421-31. DOI: 10.1080/07366299.2011.573435.10.1080/07366299.2011.573435Search in Google Scholar

[2] Tsuruta T. Removal and recovery of lithium using various microorganisms. J Biosci Bioeng. 2005;100:562-566. DOI: 10.1263/jbb.100.562.10.1263/jbb.100.56216384797Search in Google Scholar

[3] Marcinčáková R, Kaduková J, Mražíkov A, Velgosová O, Luptáková A, Ubaldini S. Metal bioleaching from spent lithium-ion batteries using acidophilic bacterial strains. Inz Miner. 2016;17:117-20. Available from: https://pdfs.semanticscholar.org/0914/a95011769ec02eb2a2ad50f8a55a389c2814.pdfSearch in Google Scholar

[4] Wang L, Meng CG, Ma W. Study on Li+ uptake by lithium ion-sieve via the pH technique. Colloid Surf A. 2009;334:34-9. DOI: 10.1016/j.colsurfa.2008.09.050.10.1016/j.colsurfa.2008.09.050Search in Google Scholar

[5] Kurniawan A, Yamamoto T. Biosorption of lithium using biofilm matrix of natural microbial consortium. Microbiol Indonesia. 2015;9(3). DOI: 10.5454/mi.9.3.2.10.5454/mi.9.3.2Search in Google Scholar

[6] Aneja RK, Chaudhary G, Ahluwalia SS, Goyal D. Indian. Biosorption of Pb2+ and Zn2+ by non-living biomass of Spirulina sp. J Microbiol. 2010:50:438-42. DOI: 10.1007/s12088-011-0091-8.10.1007/s12088-011-0091-8320985222282612Search in Google Scholar

[7] Rodrigues MS, Ferreira LS, de Carvalho JC, Lodi A, Finocchio E, Converti AJ. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. Hazard Mater. 2012;30:217-218. DOI: 10.1016/j.jhazmat.2012.03.022.10.1016/j.jhazmat.2012.03.02222480702Search in Google Scholar

[8] Solisio C, Lodi A, Soletto D, Converti A. Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol. 2008:99:5933-7. DOI: 10.1016/j.biortech.2007.11.002.10.1016/j.biortech.2007.11.00218082399Search in Google Scholar

[9] Finocchio E, Lodi A, Solisio C, Converti A. Chromium(VI) removal by methylated biomass of Spirulina platensis: The effect of methylation process. Chem Eng J. 2010:156:264-9. DOI: 10.1016/j.cej.2009.10.015.10.1016/j.cej.2009.10.015Search in Google Scholar

[10] Zinicovscaia I, Yushin N, Shvetsova M, Frontasyeva M. Zinc removal from model solution and wastewater by Arthrospira (Spirulina) platensis biomass. Int J Phytoremediat. 2018;20:901-8. DOI: 10.1080/15226514.2018.1448358.10.1080/15226514.2018.144835829873533Search in Google Scholar

[11] Zinicovscaia I, Yushin N, Gundorina S, Demčák Š, Frontasyeva M, Kamanina I. Biosorption of nickel from model solutions and electroplating industrial effluent using cyanobacterium Arthrospira platensis. Desalin Water Treat. 2018;120:158-65. DOI: 10.5004/dwt.2018.22691.10.5004/dwt.2018.22691Search in Google Scholar

[12] Cepoi L, Zinicovscaia I, Rudi L, Chiriac T, Miscu V, Djur S, et al. Growth and heavy metals accumulation by Spirulina platensis biomass from multicomponent copper containing synthetic effluents during repeated cultivation cycles. Ecol Eng. 2020;142:105637. DOI: 10.1016/j.ecoleng.2019.105637.10.1016/j.ecoleng.2019.105637Search in Google Scholar

[13] Zinicovscaia I, Safonov A, Ostalkevich S, Gundorina S, Nekhoroshkov P, Grozdov D. Metal ions removal from different type of industrial effluents using Spirulina platensis biomass. Int J Phytoremediat. 2019;21(14):1442-8, DOI: 10.1080/15226514.2019.163326410.1080/15226514.2019.1633264Search in Google Scholar

[14] Cepoi L, Zinicovscaia I, Chiriac T, Rudi L, Yushin N, Miscu V. Silver and gold ions recovery from batch systems using Spirulina platensis biomass. Ecol Chem Eng S. 2019;26(2):229-40. DOI: 10.1515/eces-2019-002910.1515/eces-2019-0029Search in Google Scholar

[15] Gomez S, Garcia A, Landete-Castillejos T, Gallego L, Pantelica D, Pantelica A. Potential of the Bucharest 3MV Tandetron™ for IBA studies of deer antler mineralization. Nuclear Instruments Methods Phys Res Sect B: Beam Interactions Mater Atoms. 2016;371:413-8. DOI: 10.1016/j.nimb.2015.10.012.10.1016/j.nimb.2015.10.012Search in Google Scholar

[16] Park J, Sato H, Nishihama S, Yoshizuka K. Lithium recovery from geothermal water by combined adsorption methods. Solvent Extract Ion Exchange. 2012;30:398-404. DOI: 10.1080/07366299.2012.687165.10.1080/07366299.2012.687165Search in Google Scholar

[17] Zinicovscaia I, Cepoi L, Chiriac T, Mitina T, Grozdov D, Yushin N, et al. Application of Arthrospira (Spirulina) platensis biomass for silver removal from aqueous solutions. Int J Phytoremediat. 2017;19:1053-8. DOI: 10.1080/15226514.2017.1319332.10.1080/15226514.2017.1319332Search in Google Scholar

[18] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451-65. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

[19] Robati D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostruct Chem. 2013;3:55. DOI: 10.1186/2193-8865-3-55.10.1186/2193-8865-3-55Search in Google Scholar

[20] Ho YS, Huang CT, Huang HW. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem. 2002;37:1421-30. DOI: 10.1016/S0032-9592(02)00036-5.10.1016/S0032-9592(02)00036-5Search in Google Scholar

[21] Bhatnagar A, Minocha AK, Sillanpää M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J. 2010;48:181-6. DOI: 10.1016/j.bej.2009.10.005.10.1016/j.bej.2009.10.005Search in Google Scholar

[22] Sud D, Mahajan G, Kaur MP. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresour Technol. 2008;99:6017-27. DOI: 10.1016/j.biortech.2007.11.064.10.1016/j.biortech.2007.11.06418280151Search in Google Scholar

[23] Celekli A, Yavuzatmaca M, Bozkurt H. Kinetic and equilibrium studies on biosorption of reactive red 120 from aqueous solution on Spirogyra majuscula. Chem Eng J. 2009;152:139-45. DOI: 10.1016/j.cej.2009.04.016.10.1016/j.cej.2009.04.016Search in Google Scholar

[24] Vilar VJ, Botelho CM, Pinheiro JP, Domingos RF, Boaventura RA. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling. J Hazard Mater. 2009;163:1113-22. DOI: 10.1016/j.jhazmat.2008.07.083.10.1016/j.jhazmat.2008.07.08318762370Search in Google Scholar

[25] Al-Rub FA, El-Naas MH, Ashour I, Al-Marzouqi M. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem. 2006;41:457-64. DOI: 10.1016/j.procbio.2005.07.018.10.1016/j.procbio.2005.07.018Search in Google Scholar

[26] Govindaraju K, Basha SK, Kumar VG, Singaravelu G. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci. 2008;43:5115-22. DOI: 10.1007/s10853-008-2745-4.10.1007/s10853-008-2745-4Search in Google Scholar

[27] Yun YS, Volesky B. Modeling of lithium interference in cadmium biosorption. Environ Sci Technol. 2003;37:3601-8. DOI: 10.1021/es011454e.10.1021/es011454e12953872Search in Google Scholar

[28] Belfiore C, Curia MV, Farías ME. Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Revista Argent Microbiologia. 2018;50(3):311-22. DOI: 10.1016/j.ram.2017.07.005.10.1016/j.ram.2017.07.00529239754Search in Google Scholar

eISSN:
1898-6196
Langue:
Anglais