Accès libre

An Evaluation of the Effectiveness of Nanosilver in Swimming Pool Water Treatment - Water Quality and Toxicity of the Product

À propos de cet article

Citez

[1] DIN 19643 1–4:1997. Aufbereitung von Schwimm und Badebeckenwasser (Water treatment for swimming and bathing pools). Beuth-Verlag, Berlin/Düsseldorf, 1997. www.beuth.de/de/norm/din-19643-1/2936483.Search in Google Scholar

[2] Guidelines for Safe Recreational Water Environments. Volume 2: Swimming Pools and Similar. Geneva: WHO; 2006. http://www.who.int/water_sanitation_health/bathing/srwe2full.pdf.Search in Google Scholar

[3] DIN 19643 1–4:2012–11. Aufbereitung von Schwimm und Badebeckenwasser (Water treatment for swimming and bathing pools). Beuth-Verlag, Berlin, 2012. www.beuth.de/de/norm/din-19643-1/164174095.Search in Google Scholar

[4] ZHK NIZP-PZH: Zalecenia dotyczące wymagań sanitarno-higienicznych dla obiektów basenowych i jakości wody w basenach przeznaczonych dla niemowląt i dzieci w wieku od 6 miesięcy do 3 lat (Recommendations on Sanitary and Hygienic Requirements for Swimming Pools and Water Quality in Pools for Babies and Children from 6 Months to 3 Years Old). Warszawa: 2012. http://www.pzh.gov.pl.Search in Google Scholar

[5] Rozporządzenie Ministra Zdrowia z dn. 9 listopada 2015 r. w sprawie wymagań jakim powinna odpowiadać woda na pływalniach, Dz. U. 2015, poz. 2016. (Polish Ordinance of the Minister of Health of 9 November 2015: On the requirements that should be met by swimming pool water) http://isap.sejm.gov.pl/DetailsServlet?id=WDU20150002016.Search in Google Scholar

[6] Wyczarska-Kokot J. Effect of disinfection methods on microbiological water quality in indoor swimming pools. Archit Civ Eng Environ. 2009;4:145–52. http://www.acee-journal.pl/1,7,13,Issues.html.Search in Google Scholar

[7] Skibinski B, Uhlig S, Müller P, Slavik I, Uhl W. Impact of different combinations of water treatment processes on the concentration of disinfection byproducts and their precursors in swimming pool water. Environ Sci Technol. 2019; 53:8115–26. DOI:10.1021/acs.est.9b00491.10.1021/acs.est.9b0049131180210Search in Google Scholar

[8] Chowdhury S, Alhooshani K, Karanfil T. Disinfection by-products in swimming pool: Occurrences, implications and future needs. Water Res. 2014;53:68–109. DOI: 10.1016/j.watres.2014.01.017.10.1016/j.watres.2014.01.01724509344Search in Google Scholar

[9] Wyczarska-Kokot J, Lempart A, Dudziak M. Chlorine contamination in different points of pool - risk analysis for bathers’ health. Ecol Chem Eng A. 2017;24: 217–26. DOI:10.2428/ecea.2017.24(2)23.Search in Google Scholar

[10] Cheema WA, Kaarsholm KMS, Andersen HR. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. Water Res. 2017;110:141–9. DOI: 10.1016/j.watres.2016.12.008.10.1016/j.watres.2016.12.00828006704Search in Google Scholar

[11] Łaskawiec E, Madej M, Dudziak M, Wyczarska-Kokot J. The use of membrane techniques in swimming pool water treatment. J Ecol Eng. 2017;18:130–6. DOI: 10.12911/22998993/74282.10.12911/22998993/74282Search in Google Scholar

[12] Kim D, Ates N, Kaplan Bekaroglu S, Selbes M, Karanfil T. Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools. J Environ Sci. 2017;58:155–62. DOI: 10.1016/j.jes.2017.04.020.10.1016/j.jes.2017.04.02028774604Search in Google Scholar

[13] Tardif R, Rodriguez M, Catto C, Charest-Tardif G, Simard S. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study. J Environ Sci. 2017;58:163–72. DOI: 10.1016/j.jes.2017.05.021.10.1016/j.jes.2017.05.02128774605Search in Google Scholar

[14] Gomà A, de Lluis R, Roca-Ferrer J, Lafuente J, Picado C. Respiratory, ocular and skin health in recreational and competitive swimmers: Beneficial effect of a new method to reduce chlorine oxidant derivatives. Environ Res. 2017;152:315–21. DOI: 10.1016/j.envres.2016.10.030.10.1016/j.envres.2016.10.03027835856Search in Google Scholar

[15] Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013 39(4):373–83. DOI: 10.3109/1040841X.2012.713323.10.3109/1040841X.2012.71332322928774Search in Google Scholar

[16] Zhang H. Application of silver nanoparticles in drinking water purification. Open Access Dissertations, Paper 29. Kingston: University of Rhode Island; 2013. http://digitalcommons.uri.edu/oa_diss/29.Search in Google Scholar

[17] Tugulea AM, Bérubé D, Giddings M, Lemieux F, Hnatiw J, Priem J et al. Nano-silver in drinking water and drinking water sources: Stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int. 2014;21:11823–31. DOI: 10.1007/s11356-014-2508-5.10.1007/s11356-014-2508-5417710024458938Search in Google Scholar

[18] Yang, X. A Study on Antimicrobial Effects of Nanosilver for Drinking Water Disinfection. Singapore: Springer Nature; 2017. ISBN 978-981-10-2902-8.10.1007/978-981-10-2902-8Search in Google Scholar

[19] Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016;50(16):8840–8. DOI: 10.1021/acs.est.6b00998.10.1021/acs.est.6b00998Search in Google Scholar

[20] Mackevica A, Skjolding LM, Gergs A, Palmqvist A, Bauna A. Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquatic Toxicol. 2015;161:10–6. DOI: 10.1016/j.aquatox.2015.01.023.10.1016/j.aquatox.2015.01.023Search in Google Scholar

[21] Zou X, Li P, Huang Q, Zhang H. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. Aquatic Toxicol. 2016;176:97–105. DOI: 10.1016/j.aquatox.2016.04.019.10.1016/j.aquatox.2016.04.019Search in Google Scholar

[22] Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, et al. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic. 2017;76:230–9. DOI: 10.1016/j.ecolind.2017.01.018.10.1016/j.ecolind.2017.01.018Search in Google Scholar

[23] Zhang W, Xiao B, Fang T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere. 2018;191:324–34. DOI: 10.1016/j.chemosphere.2017.10.016.10.1016/j.chemosphere.2017.10.016Search in Google Scholar

[24] McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116–27. DOI: 10.1016/j.jfda.2014.01.010.10.1016/j.jfda.2014.01.010Search in Google Scholar

[25] Hsieh CY, Tsai MH, Rayan DK, Pancorbo OC. Toxicity of the 13 priority pollutant metals to Vibrio fischeri in the Microtox® chronic toxicity test. Sci Total Environ. 2008;320(1):37–50. DOI: 10.1016/S0048-9697(03)00451-0.10.1016/S0048-9697(03)00451-0Search in Google Scholar

[26] Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–200. DOI: 10.1007/s00204-013-1079-4.10.1007/s00204-013-1079-4Search in Google Scholar

[27] Down RD, Lehr JH. Environmental Instrumentation and Analysis Handbook. New York: Wiley; 2005. ISBN: 9780471463542.10.1002/0471473332Search in Google Scholar

[28] Kaul K. Handbook of Water and Wastewater Analysis. New Delhi: Atlantic Publishers and Distributors; 2007. ISBN 10 8126906103.Search in Google Scholar

[29] PN-EN ISO 9308-1:2014–12. Water quality - Quantification of Escherichia coli and coliforms - Part 1: Membrane filtration method for testing waters with low accompanying microflora. https://sklep.pkn.pl/pn-en-iso-9308-1-2014-12e.html.Search in Google Scholar

[30] PN-EN ISO 6222:2004. Water quality - Quantification of microorganisms capable of growth -Determination of total colony count by inoculation on nutrient agar. https://www.iso.org/standard/28960.html.Search in Google Scholar

[31] PN-EN ISO 11731-2:2008. Water quality - Detection and quantification of Legionella bacteria - Part 2: Membrane filtration method for waters with low bacterial counts. https://sklep.pkn.pl/pn-en-iso-11731-2-2008e.html.Search in Google Scholar

[32] PN-EN ISO 6888-1:2001/A1:2004. Food and feed microbiology - Horizontal method for determining the number of coagulase positive staphylococci (Staphylococcus aureus and other species) - Part 1: Method using Baird-Parker agar medium. https://sklep.pkn.pl/catalogsearch/result/?q=PN-EN%20ISO%206888-1:2001/A1:2004.Search in Google Scholar

[33] World Health Organization. Silver in Drinking-Water; Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; WHO/SDE/WSH/03.04/14; WHO: Geneva, Switzerland, 2003. http://www.who.int/water_sanitation_health/dwq/chemicals/silver.pdf.Search in Google Scholar

[34] ISO 11348-3:2007: Water quality - Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) - Part 3: Method using freeze-dried bacteria, 2007. www.iso.org/standard/40518.html.Search in Google Scholar

[35] Hartl M, Humpf HU. Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol. 2005;38(12):1097–102. DOI: 10.1016/S0278-6915(00)00112-5.10.1016/S0278-6915(00)00112-5Search in Google Scholar

[36] Svensson BM, Mathiasson L, Mårtensson L, Bergström S. Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environ Monit Assess. 2005;2:309–21. DOI: 10.1007/s10661-005-6029-z.10.1007/s10661-005-6029-z15869192Search in Google Scholar

[37] Sims I. Whitehouse P, Lacey R. The OECD Lemna growth inhibition test. Report No. EA 4784, Environment Agency, USEPA Office of Prevention Pesticides and Toxic Substances. Washington: 1999. http://www.oecd.org/chemicalsafety/testing/1948054.pdf.Search in Google Scholar

[38] Phytotoxkit: Seed germination and early growth microbiotest with higher plants. Standard operational procedure. MicroBioTest Inc., 24p. Mariakerke, 2004. http://www.microbiotests.be/SOPs/Phytotoxkit%20SOP%20-%20A5.pdf.Search in Google Scholar

[39] van Veldhoven K, Keski-Rahkonen P, Barupal DK, Villanueva CM, Font-Ribera L, Scalbert A, et al. Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study. Environ Int. 2018;111:60–70. DOI: 10.1016/j.envint.2017.11.017.10.1016/j.envint.2017.11.017578666729179034Search in Google Scholar

[40] Westerlund J, Bryngelsson IL, Löfstedt H, Eriksson K, Westberg H, Graff P. Occupational exposure to trichloramine and trihalomethanes: adverse health effects among personnel in habilitation and rehabilitation swimming pools. J Occup Environ Hyg. 2019;16:78–88. DOI: 10.1080/15459624.2018.1536825.10.1080/15459624.2018.153682530335595Search in Google Scholar

[41] Andersson M, Backman H, Nordberg G, Hagenbjörk A, Hedman L, Eriksson K et al. Early life swimming pool exposure and asthma onset in children - a case-control study. Environ Health. 2018;17:34. DOI: 10.1186/s12940-018-0383-0.10.1186/s12940-018-0383-0589609729642932Search in Google Scholar

[42] Florentin A, Hautemaniere A, Hartemann P. Health effects of disinfection by-products in chlorinated swimming pools. Int J Hyg Environ Health. 2011;214:461–9. DOI: 10.1016/j.ijheh.2011.07.012.10.1016/j.ijheh.2011.07.01221885333Search in Google Scholar

[43] Golovina NB, Kustov LM. Toxicity of metal nanoparticles with a focus on silver. Mendeleev Commun. 2013; 23:59–65. DOI: 10.1016/j.mencom.2013.03.001.10.1016/j.mencom.2013.03.001Search in Google Scholar

[44] McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, et al. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci Total Environ. 2017;575:231–46. DOI: 10.1016/j.scitotenv.2016.10.041.10.1016/j.scitotenv.2016.10.04127744152Search in Google Scholar

[45] Heinlaan M, Muna M, Knobel M, Kistler D, Odzak N, Kühnel D, et al. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study. Environ Pollut. 2016;216:689–99. DOI: 10.1016/j.envpol.2016.06.033.10.1016/j.envpol.2016.06.03327357482Search in Google Scholar

[46] Echavarri-Bravo V, Paterson L, Aspray TJ, Porter JS, Winson MK, Hartl MGJ. Natural marine bacteria as model organisms for the hazard assessment of consumer products containing silver nanoparticles. Mar Environ Res. 2017;130:293–302. DOI: 10.1016/j.marenvres.2017.08.006.10.1016/j.marenvres.2017.08.00628867133Search in Google Scholar

[47] Jemec A, Kahru A, Potthoff A, Drobne D, Heinlaan M, Böhme S, et al. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environ Int. 2016;87:20–32. DOI: 10.1016/j.envint.2015.10.014.10.1016/j.envint.2015.10.01426638016Search in Google Scholar

[48] Cox A, Venkatachalam P, Sahi S, Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol Biochem. 2016;107:147–63. DOI: 10.1016/j.plaphy.2016.05.022.10.1016/j.plaphy.2016.05.02227288991Search in Google Scholar

[49] Pittol M, Tomacheski D, Simõesa DN, Ribeiro VF, Santana RMC. Macroscopic effects of silver nanoparticles and titanium dioxide on edible plant growth, Environ Nanotechnol Monit Manage. 2017;8:127–33. DOI: 10.1016/j.enmm.2017.07.003.10.1016/j.enmm.2017.07.003Search in Google Scholar

[50] Barabanov PV, Gerasimov AV, Blinov AV, Kravtsov AA, Kravtsov VA. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol Environ Safety. 2018;147:715–9. DOI: 10.1016/j.ecoenv.2017.09.024.10.1016/j.ecoenv.2017.09.02428942273Search in Google Scholar

[51] World Health Organization. Guidelines for Drinking-Water Quality. Geneva: World Health Organization, 2011. ISBN: 9789241548151. http://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=5AF1C174F31F113C82076A7361781E12?sequence=1.Search in Google Scholar

eISSN:
2084-4549
Langue:
Anglais