Accès libre

Translocation of Cations During Sorption of Copper in the System Solution - Algae (Spirogyra sp.)/Translokacja Kationów Podczas Procesu Sorpcji Miedzi W Układzie Roztwór - Glony (Spirogyra Sp.)

À propos de cet article

Citez

[1] Hollar S, editor. A Closer at Bacteria, Algae, and Protozoa. New York: Britannica Educational Publishing; 2012.Search in Google Scholar

[2] Silva PC, Basson PW, Moe RL. Catalogue of the Benthic Marine Algae of the Indian Ocean. California, USA: University of California Publications in Botany; 1996.Search in Google Scholar

[3] Bellinger GE, Sigee CD. Freshwater Algae. Identification and Use as Bioindicators. Chichester, UK: John Wila & Sons; 2010.10.1002/9780470689554Search in Google Scholar

[4] Barsanti L, Gualtieri P. Algae. Anatomy, Biochemistry and Biotechnology. Boca Raton, FL: Taylor & Francis; 2006.Search in Google Scholar

[5] Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Advan. 2009;27:195-226. DOI:10.1016/j.biotechadv.2008.11.00210.1016/j.biotechadv.2008.11.002Search in Google Scholar

[6] Kłos A, Rajfur M. Influence of hydrogen cations on kinetics and equilibria of heavy-metal sorption by algae - sorption of copper cations by the alga Palmaria palmate. J Appl Phycol. 2013;25(5):1387-1394. DOI: 10.1007/s10811-012-9970-6.10.1007/s10811-012-9970-6Search in Google Scholar

[7] Chakraborty S, Bhattacharya T, Singh G, Maity JP. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf. 2014;100(1):61-68. DOI: 10.1016/j.ecoenv.2013.12.003.10.1016/j.ecoenv.2013.12.003Search in Google Scholar

[8] Bhatnagar M, Bhardwaj N, Biodiversity of algal flora in River Chambal at Kota, Rajasthan. Nature Environ Pollut Technol. 2013;12(3):547-549.Search in Google Scholar

[9] Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, et al. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels. 2014;7(1):30. DOI: 10.1186/1754-6834-7-30.10.1186/1754-6834-7-30Search in Google Scholar

[10] Pitre D, Boullemant A, Fortin C. Uptake and sorption of aluminium and fluoride by four green algal species. Chem Central J. 2014;8(1):8. DOI:10.1186/1752-153X-8-8.10.1186/1752-153X-8-8Search in Google Scholar

[11] Gokhale SV, Jyoti KK, Lele SS. Kinetic and equilibrium modeling of chromium(VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol. 2008;99:3600-3608. DOI: 10.1016/j.biortech.2007.07.039.10.1016/j.biortech.2007.07.039Search in Google Scholar

[12] das Graças Nunes Matos M, Diniz VG, Moraes de Abreu CA, Knoechelmann A, Lins da Silva V. Bioadsorption and ion exchange of Cr3+ and Pb2+ solutions with algae. Adsorption. 2009;15:75-80.10.1007/s10450-009-9152-2Search in Google Scholar

[13] Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37:4311-4330. DOI: 10.1016/S0043-1354(03)00293-8.10.1016/S0043-1354(03)00293-8Search in Google Scholar

[14] Kuyucak N, Volesky B. Accumulation of cobalt by marine alga. Biotechnol Bioeng. 1989;33(7):809-14.10.1002/bit.26033070318587987Search in Google Scholar

[15] Kuyucak N, Volesky B. Desorption of cobalt-laden algal biosorbent. Biotechnol Bioeng. 1989;33(7):815-22.10.1002/bit.26033070418587988Search in Google Scholar

[16] Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol. 2006;97:2321-2329.10.1016/j.biortech.2005.10.03216330209Search in Google Scholar

[17] El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater. 2007;148:216-228.10.1016/j.jhazmat.2007.01.14617360109Search in Google Scholar

[18] Apiratikul R, Pavasant P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol. 2008;99:2766-2777.10.1016/j.biortech.2007.06.03617698354Search in Google Scholar

[19] Sarı A, Tuzen M. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2008;157:448-454.10.1016/j.jhazmat.2008.01.00818280037Search in Google Scholar

[20] Senobari Z, Jafari N, Ebrahimzadeh MA. Biosorption of Ni(II) from aqueous solutions by marine algae Cladophora glomerata (L.) kütz. (Chlorophyta). Inter J Algae. 2014;16(2):181-192. DOI: 10.1615/InterJAlgae.v16.i2.80.10.1615/InterJAlgae.v16.i2.80Search in Google Scholar

[21] Edris G, Alhamed Y, Alzahrani A. Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: Equilibrium and kinetic study. Arabian J Sci Eng. 2014;39(1):7-93.10.1007/s13369-013-0820-xSearch in Google Scholar

[22] Kizilkaya B, Akgül R, Turker G. Utilization on the removal Cd(II) and Pb(II) ions from aqueous solution using nonliving Rivularia bulata algae. J Disper Sci Technol. 2013;34(9):257-1264.10.1080/01932691.2012.738121Search in Google Scholar

[23] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.10.1016/j.bioelechem.2011.12.00722245248Search in Google Scholar

[24] Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper(II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci. 2006;296:59-63. DOI: 10.1016/j.jcis.2005.08.033.10.1016/j.jcis.2005.08.03316168429Search in Google Scholar

[25] Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136(3):681-689. DOI:10.1016/j.jhazmat.2005.12.043.10.1016/j.jhazmat.2005.12.043Search in Google Scholar

[26] Kłos A, Rajfur M, Wacławek M, Wacławek W. Ion exchange in lichen surrounding. Ecol Chem Eng A. 2007;14(7):645-667.Search in Google Scholar

[27] Javanbakht V, Alavi SA, Zilouei H. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol. 2014;69(9):1775-1787.10.2166/wst.2013.718Search in Google Scholar

[28] He J, Chen JP. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour Technol. 2014;160:67-78. DOI: 10.1016/j.biortech.2014.01.068.10.1016/j.biortech.2014.01.068Search in Google Scholar

[29] Hackbarth FV, Girardi F, de Souza SMAGU, de Souza AAU, Boaventura RAR, Vilar VJP. Marine macroalgae Pelvetia canaliculata (Phaeophyceae) as a natural cation exchanger for cadmium and lead ions separation in aqueous solutions. Chem Eng J. 2013;242:294-305.10.1016/j.cej.2013.12.043Search in Google Scholar

[30] Plazinski W. Equilibrium and kinetic modeling of metal ion biosorption: On the ways of model generalization for the case of multicomponent systems. Adsorption. 2013;19(2-4):659-666. DOI: 10.1007/s10450-013-9489-4.10.1007/s10450-013-9489-4Search in Google Scholar

[31] Ho YS. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 2006;40(1):119-125. DOI:10.1016/j.watres.2005.10.04010.1016/j.watres.2005.10.040Search in Google Scholar

[32] Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998;70 (2):115-124. DOI: 10.1016/S0923-0467(98)00076-1.10.1016/S0923-0467(98)00076-1Search in Google Scholar

[33] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451-465. PII: S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

[34] Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34(3):735-742. PII: S0043-1354(99)00232-8. 10.1016/S0043-1354(99)00232-8Search in Google Scholar

eISSN:
1898-6196
Langue:
Anglais