À propos de cet article

Citez

Abdul-Hamid, A., Bakar, G. and Bee, G.H. (2002). Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chemistry 78(1): 69-74. Search in Google Scholar

Agyei, D. and Danquah, M.K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29(3): 272-277. Search in Google Scholar

Agyei, D., and Danquah, K.M. (2012). “Rethinking food derived bioactive peptides for antimicrobial and immunomodulatory activities.” Trends in Food Science & Technology, 23(2), 62-69. Search in Google Scholar

Agyei, D., Ongkudon, C.M., Wei, C.Y., Chan, A.S. and Danquah, M.K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bio-products Processing 98: 244-256. Search in Google Scholar

Akbari Adregani, B. and Shabani, P. 2018. Evaluation of physicochemical and functional properties of hydrolyzed protein obtained from cottonseed meal by alkalase enzyme. Journal of Research and Innovation In Food Science and Technology, (84) 15, 313-301(in Persian). Search in Google Scholar

Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bio-active Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci. 2022 Jan 27;23(3):1445. doi: 10.3390/ijms23031445. PMID: 35163367; PMCID: PMC8836030. Search in Google Scholar

Alashi, A. M., Blanchard, C.L., Blanchard, C.L., Mailer, R.G., Agboola, S.O., Mawson, J., et al. (2014). Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry 146: 500-506. Search in Google Scholar

Aluko, R. E. (2012). Bioactive peptides. Functional foods and nutraceuticals. New York, Springerverlag. Search in Google Scholar

Anadón, A., Martínez, M.A., Ares, I., Ramos, E., Martinez-Larranaga, M.R., Contreras, M.M., et al. (2010). Acute and repeated dose (4 weeks) oral toxicity studies of two antihypertensive peptides, RYLGY and AYFYPEL, that correspond to fragments (90–94) and (143–149) from αs1-casein. Food and Chemical Toxicology 48(7): 1836-1845. Search in Google Scholar

Antila, P., Paakkari, I., Jarvinen, A., Mattila, M.J., Laukkanen, M., Pihlanto-leppala, A., et al. (1991). Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. International Dairy Journal 1(4): 215-229. Search in Google Scholar

Bamdad, F., Wu, J., Chen, L. (2011). Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science 54(1): 20-28. Search in Google Scholar

Bazinet, L. and Firdaous, L. 2009. Membrane processes and devices for separation of bioactive peptides. Recent Patents on Biotechnology, 3, 61-72. Search in Google Scholar

Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., et al. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry 118(3): 559-565. Search in Google Scholar

Chakrabarti, S. and Wu, J. (2016). Bioactive peptides on endothelial function. Food Science and Human Wellness 5(1): 1-7. Search in Google Scholar

Chang, O. K., Ha, G.E., Han, G.S., Seol, K.H., Kim, H.W., Jeong, S.G., et al. (2013). Novel antioxidant Peptide derived from the ultrafiltrate of ovomucin hydrolysate. Journal of Agricultural and Food Chemistry 61(30): 7294-7300. Search in Google Scholar

Chen, G.-W., Tsai, J.-S. Pan, B.S. (2007). Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal 17(6): 641-647. Search in Google Scholar

Chen, H., Muramoto, K., Yamauchi, F., Nokihara, K., (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry 44: 2619-2623. Search in Google Scholar

Chen, L., Zhang, Q., Ji, Z., Shu, G., Chen, H.J.L. (2018). Production and fermentation characteristics of angiotensin-I-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69. Lebensmittel-Wissenschaft and Technologie 91: 532–540. doi: 10.1016/j.lwt.2018.02.002. Search in Google Scholar

Chernysh S, Kim S, Bekker G, Pleskach V, Filatova N, Anikin V, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci. 2002; 99(20):12628-32. [DOI:10.1073/pnas.192301899] Search in Google Scholar

Claeys, W. L., Verraes, C., Cardoen, S., De Block, J., Huyghebaert, A., Raes, K., Herman, L. (2014). Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42, 188201. Search in Google Scholar

Da Rosa Zavareze, E., Telles, A.C., Halal, S.L.M., Meritaine, D.R., Colussi, R., Assis, L.M.D. et al. (2014). Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT - Food Science and Technology 59(2, Part 1): 841-848. Search in Google Scholar

Daliri, H., Ahmadi R., Pezeshki, A., Hamishehkar, H., Mohammadi, M., Beyrami, H., Khakbaz Heshmati, M., Ghorbani, M., (2021), Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties, LWT, Volume 150, 2021, 111853, https://doi.org/10.1016/j.lwt.2021.111853. Search in Google Scholar

Danquah, MK. and Agyei, D. (2012). Pharmaceutical applications of bioactive peptides. OA Biotechnology 1: 5. Search in Google Scholar

Day, L., Seymour, R.B., Pitts, K.F., Konczak, I., Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology 20(9): 388-395. Search in Google Scholar

De Castro, R. J. S. and Sato, H.H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74: 185-198. Search in Google Scholar

Deeth H.C., Bansal N. (editors), Whey proteins from milk to medicine, Academic Press, India, 2019, ISBN: 978-0-12-812124-5 Search in Google Scholar

Dionysius, D. A. and Milne, J.M. (1997). Antibacterial peptides of bovine lactoferin:purification and characterization. Journal of Dairy Science 80: 667-674. Search in Google Scholar

Ejtehadifar M, Halabian R, Fooladi AAI, Ghazavi A, Mosayebi G. Anti-cancer effects of Staphylococcal Enterotoxin type B on U266 cells co-cultured with Mesenchymal Stem Cells. Microb Pathog. 2017; 113:438-44. [DOI:10.1016/j. micpath.2017.11.024] [PMID] Search in Google Scholar

Escudero, E., L. Mora, Toldra, F. (201 4). Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry 161: 305-311. Search in Google Scholar

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127(12):2893-917. [DOI:10.1002/ijc.25516] Search in Google Scholar

Fiat, A.M, Migliore-Samour, D., Jolles, P., Drouet, L., Bal dit Sollier, C., Caen, J. (1993). Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. Journal of dairy science 76(1): 301-310. Search in Google Scholar

Fosgerau, K., and Ohshima, T. (2015). “Peptide therapeutics: current status and future directions.” Drug Discovery Today, 20, 122–128. Search in Google Scholar

Froehlich JC. 1997. Opioid peptides. Alcohol Health Res World. 21(2):132-6. Search in Google Scholar

Gagnaire, V., Pierre, A., Molle, D., Leonil, J. (1996). Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles. Journal of Dairy Research 63: 405-422. Search in Google Scholar

Gobbetti, M., Hui, Y.H. and Willy, J. 2007. Bioactive peptides in dairy products. Hand Book of Food Products manufacturing, 489-517. Search in Google Scholar

Gobbetti, M., Stepaniak, L.,De Angelis, M., Corsetti, A., D Cagno, R. (2002). Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Critical Reviews in Food Science and Nutrition 42(3): 16. Search in Google Scholar

Harbourne, N., Marete, E., Jacquier, J.C., O,Riordan, D. (2013). Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages A review. Food Research International 50(2):480-486. Search in Google Scholar

Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev. 2013; 33(1):190-234. [DOI:10.1002/med.20252] Search in Google Scholar

He, R., Girgih, A.T., Malomo, S. A., Ju, X., Aluko, R.E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods 5(1): 219-227. Search in Google Scholar

Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008; 1778(2):357-75. [DOI:10.1016/j.bbamem.2007.11.008] Search in Google Scholar

Kayser, H. and Meisel, H. (1996). Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins.” FEBS Letters 25, 383 (1-2):18-20. Search in Google Scholar

Kilara, A. and Panyam, D. (2003). Peptides from milk proteins and their properties. Critical Review in Food Science and Nutrition 43: 607-633. Search in Google Scholar

Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal 16(9): 945-960. Search in Google Scholar

Korhonen, H. and Pihlanto, A. 2006. Bioactive Peptides: Production and functionality. Internatinal Dairy Journal, 16(9), l945-960. Search in Google Scholar

Lackner, M., Drew, D., Bychkova, V., Mustakhimov, I. (2022), Value-Added Products from Natural Gas Using Fermentation Processes: Fermentation of Natural Gas as Valorization Route, in: Takht Ravanch M. (ed.), Natural Gas: New Perspectives and Future Developments, IntechOpen, DOI: 10.5772/intechopen.103813 Search in Google Scholar

Last, N.B., Schlamadinger, D.E., Miranker, A.D. (2013). A common landscape for membrane-active peptides. Protein Science 22: 870-882. Search in Google Scholar

Lau, J.L., and Dunn, M.K. (2018). “Therapeutic peptides:historical perspectives current development trends and future directions.” Bioorganic & Medicinal Chemistry Journal, 26, 2700–2707. Search in Google Scholar

Li, G.-H., Le, G.W., Shi, Y.H., Shrestha, S. (2004). Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research 24: 469-486. Search in Google Scholar

Lorenzen, P. C. and Meisel, H. (2005). Influence of trypsin action in yoghurt milk on the release of caseinophospho-peptide-rich fractions and physical properties of the fermented products. International Journal of Dairy Technology 58(2): 119-124. Search in Google Scholar

Marambe, Pathiraja Weerasingha Mudiynseralahamilage Lesanthi Harsha Kumari (2011). Search in Google Scholar

GENERATION AND CHARACTERIZATION OF BIO-ACTIVE PEPTIDES FROM FLAXSEED (Linum usitatissimum L.) PROTEINS Search in Google Scholar

A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon, Saskatchewan, Canada Search in Google Scholar

Miquel, E., Gomez, J.A., Aleqria, A., Barbera, R., Farre, R., and et al. (2005). “Identification of casein phosphopeptides released after simulated digestion of milk based infant formulas.” Journal of Agricultural and Food Chemistry, 53, 3426-3433 Search in Google Scholar

Miquel, E., Gomez, J.A., Aleqria, A., Barbera, R., Farre, R., Recio, I.(2005). Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. Journal of Agricultural and Food Chemistry 53: 3426-3433. Search in Google Scholar

Mirdamadi, S., Soleymanzadeh, N., Mirzaei, M., Motahari, P. (2017). Bioactive peptides: production, health effects and application as natural supplements for functional foods production. Journal of Food Hygiene, 7(25): 1-20. (In Persian) Search in Google Scholar

Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. (2016). Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease 6(7): 425-439. Search in Google Scholar

Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. Hosseini, E. (2015). Purification and identification ofantioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods 19: 259-268. Search in Google Scholar

Mizuno, S., Matsuura, K., Gotou, T., Nishimura, S., Kajimoto, O., Yabune, M. et al. (2005). Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with highnormal blood pressure and mild hyper-tension. British Journal of Nutrition 94(1): 84-91. Search in Google Scholar

Moghaddam M.M., Farhadie B., Mirnejad R., Kooshki H., Evaluation of an antibacterial peptide-loaded amniotic membrane/silk fibroin electrospun nanofiber in wound healing, Int Wound J.2023;1–14, https://doi.org/10.1111/iwj.14215 Search in Google Scholar

Mohanty, D. P., Mohapatra, S., Misra, S., Sahu, P.S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences 23(5): 577-583. Search in Google Scholar

Möller N.P., KE, S.-A. Roos, N., Schrezenmeir, J. et al. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition. 47: 171-182. Search in Google Scholar

Moslehishad, M., Ehsani, M.R., Salami, M., Mirdamadi, S., Ezzatpanah, H., Niasari Naslaji, A., et al. (2013). The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. International Dairy Journal 29: 82-87. Search in Google Scholar

Motahari, P., Mirdamadi, S., Kiani Rad, M. (2016). A Sequential Statistical Approach Towards an Optimized Production of Bacteriocin by Lactobacillus pentosus TSHS. Journal of Food Processing and Preservation 40(6):1238-1246. Search in Google Scholar

Mudgil, P., Kamal, H., Yuen G.C., Maqsood, S. (2018). Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydro-lysates. Food Chemistry 259: 46–54. doi: 10.1016/j.food-chem.2018.03.082. Search in Google Scholar

Nakamura, Y., Yamamoto, N., Sakai, K., Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Journal of Dairy Science, 78: 1253-1257. Search in Google Scholar

Nakano, D., OGURA K., Miyakoshi, M., Ishii, F., Kawanishi, H., Kurumazuka, D., et al. (2006). Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Bioscience, Biotechnology and Biochemistry 70: 1118-1126. Search in Google Scholar

Narva, M., Rissanen, J., Halleen, J., Vapaatalo, H., Vaananen, K., Korpela, R. (2007). Effects of bioactive peptide, valyl-prolyl-proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Annals of Nutrition and Metabolism 51: 65-74. Search in Google Scholar

Newsnet, 2023: https://www.newsnetmedia.com/story/48645895/microbial-peptone-market-to-see-massive-growth-by-2031 Search in Google Scholar

Nicolas, P. (2009). Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. Febs Journal 276: 6483-6496. Search in Google Scholar

Nongonierma, A.B., Paolella, S., Mudgil, P., Maqsood, S., FitzGerald, R.J. (2017). Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. Journal of Functional Foods 34: 49–58. doi: 10.1016/j.jff.2017.04.016. Search in Google Scholar

Nourbakhsh P, Ganji A, Farahani I, Hosseinian R, Yeganefard F, Mirzaee R, et al. Adipokine omentin-1: A diagnostic tool in breast cancer. Int J Basic Sci Med. 2018; 3(2):89-93. [DOI:10.15171/ijbsm.2018.16] Search in Google Scholar

O’Mahony, J. A., & Fox, P. F. (2013). Milk proteins: Introduction and historical aspects. In P. L. H. McSweeney, & P. F. Fox (Eds.), Advanced dairy chemistry. Vol. 1a Proteins: Basic aspects (pp. 4385). New York, NY: Springer. Search in Google Scholar

Panahi Z, Abdoli A, Mosayebi G, Mahdavi M, Bahrami F. Subcutaneous administration CpG-ODNs acts as a potent adjuvant for an HIV-1-tat-based vaccine candidate to elicit cellular immunity in BALB/c mice. Biotechnol Lett. 2018; 40(3):527-33. [DOI:10.1007/s10529-017-2497-9] Search in Google Scholar

Park, Y. W. and Nam, M.S. (2015). Bioactive Peptides in Milk and Dairy Products: A Review..”Korean Journal for Food Science of Animal Resources 35: 831-840. Search in Google Scholar

Pellegrini, A., Dettling, C., Thomas, U., Hunziker, P. (2001). Isolation and characterization of four bactericidal domains in the bovine beta-lactoglobulin. Biochimica and Biophysica Acta. 1526:131-140. Search in Google Scholar

Phelan, M., Aherne, A., FitzGerald, R.J. O´Brien, N.M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regu (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology 99(6): 1690-1698. Search in Google Scholar

Raikos, V., Dassios, T. (2014). Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Science & Technology 94: 91-101. Search in Google Scholar

Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry 135: 1245-1252. Search in Google Scholar

Ruiz-ruiz, J., Davila-Ortiz, G., Chel-Guerrero, L., Betancur-Ancona, D., Ruiz-Ruiz, J., Davila-Ortiz, G., et al. (2013). Angiotensin I-converting enzyme inhibitory and antioxidant peptide fractions from hard-to-cook bean enzymatic hydrolysates. Journal of Food Biochemistry 37: 26-35. Search in Google Scholar

Rutherfurd-Markwick, K. J. (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108. Search in Google Scholar

Sabeena Farvin, K. H., Baron, C.P., Nielsen, N.S., Otte, J., Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 2 – Characterisation of peptide fractions. Food Chemistry, 123: 1090-1097. Search in Google Scholar

Salami, M., Moosavi-movahedi, A.A., Ehsani, M.R., Yousefi, R., Haertle, T., Chobert, J.M. et al. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry 58: 3297-3302. Search in Google Scholar

Sanchez, A., and Vazquez, A. (2017). “Bioactive peptides: A review.” Food Quality and Safety, 1, 29-46. Search in Google Scholar

Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol. 2009; 625(1-3):190-4. [DOI:10.1016/j.ejphar.2009.08.043] [PMID] Search in Google Scholar

Seppo, L., Jauhiaineh, T., Poussa, T., Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition 77: 326-330. Search in Google Scholar

Shahidi, F. and Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International, 91: 914-931. Search in Google Scholar

Sheih, I. C., Wu, T.K., Fang, T.J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Biore-source Technology 100:3419-3425. Search in Google Scholar

Shimizu, M. and Son, D.O. (2007). Food-derived peptides and intestinal functions. Current Pharmaceutical Design, 13: 885-895. Search in Google Scholar

Singh, B. P., Vij, S., Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides 54: 171-179. Search in Google Scholar

Soleyanzadeh, N., Mirdamadi, S., KianiRad, M. (2016). Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science & Technology 96: 443-457. Search in Google Scholar

Sørensen, E. S., & Petersen, T. E. (1993). Purification and characterization of 3 proteins isolated from the proteose peptone fraction of bovine-milk. Journal of Dairy Research, 60, 189197. Search in Google Scholar

Stuknyte, M., De Noni, I., Guglielmetti, S., Minuzzo, M., Mora, D. (2011). Potential immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinases of lactic acid bacteria. International Dairy Journal 21(10): 763-769. Search in Google Scholar

Suetsuna, K. and Chen, J.R. (2002). Isolation and Characterization of Peptides with Antioxidant Activity Derived from Wheat Gluten. Food science and technology research 8: 227-230. Search in Google Scholar

Taskin M., E.B. Kurbanoglu, Evaluation of waste chicken feathers as peptone source for bacterial growth, Journal of Applied Microbiology, Volume 111, Issue 4, 1 October 2011, Pages 826–834, https://doi.org/10.1111/j.1365-2672.2011.05103.x Search in Google Scholar

Teschemacher, H., Koch, G., Brantl, V. (1997). Milk protein-derived opioid receptor ligands. Biopolymers 43: 99-117. Search in Google Scholar

Trompette, A., Claustre, J., Caillon, F., Jourdan, G., Chayvialle, J.A., Plaisancie, P. (2003). Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. Journal of Nutrition 133: 3499-3503. Search in Google Scholar

Tsai, J. S., Chen, T.J., Pan, B.S., Gong, S.D., Chung, M.Y. (2008). Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry 106:552-558. Search in Google Scholar

Tuysuz, E., Ozkan, H., Arslan, N.P., Adiguzel, A., O. Baltaci, M., Taskin, M. (2021), Bioconversion of waste sheep wool to microbial peptone by Bacillus licheniformis EY2, Biofpr, https://doi.org/10.1002/bbb.2232 Search in Google Scholar

Udenigwe, C. C. and Aluko, R.E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science 77: 11-24. Search in Google Scholar

Walther, B. and Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal of Vitamin and Nutrition Research 81: 181-192. Search in Google Scholar

Walther, B., and Sieber, R. (2011). “Bioactive proteins and peptides in foods.” International Journal of Vitamin and Nutrition Research, 81, 181-192. Search in Google Scholar

Wang Z, Wang G. APD: The antimicrobial peptide database. Nucleic Acids Res. 2004; 32(suppl. 1):D590-D2. [DOI:10.1093/nar/gkh025] Search in Google Scholar

Wu, W., Yu, P.P., Zhang, F.Y., Hx, C., ZM, J. (2014). Stability and cytotoxicity of angiotensin-Iconverting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University- Science B 15(2): 143-152. Search in Google Scholar

Yamamoto, N., Maenom, M., Takano, T. (1999). Purification and characterization of an antihypertensive peptide from a yogurt-like productfermented by Lactobacillus helveticus CPN4. Journal of Dairy Science 82: 1388-1393. Search in Google Scholar

Zanutto-Elgui, M.R., Vieira, J.C.S., do Prado, D.Z., Buzalaf, M.A.R., de Magalhães Padilha, P., de Oliveira, D.E., Fleuri, L.F. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry 278: 823–831. doi:  10.1016/j. foodchem.2018.11.119. Search in Google Scholar

eISSN:
2564-615X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other