Accès libre

Electrode surfaces based on multiwall carbon nanotubes-chitosan composites validated in the detection of homocysteine biomarkers for cardiovascular disease risk monitoring

À propos de cet article

Citez

Ageing and health reports for the WHO. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health#, 2022 (accessed 10 October 2022). Search in Google Scholar

D. Lorthanavanich, O. Komazawa, Introduction. Population Ageing in Thailand Long-term Care Model: Review of Population Ageing Practices and Policies, 2nd ed.; D. Lorthanavanich, O. Komazawa, Eds.; ERIA: Jakarta: ER-IA, Jakarta, 2021. Volume 2, pp. 1-11. Search in Google Scholar

Cardiovascular diseases (CVDs) reports for the WHO. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), 2021 (accessed 12 October 2022). Search in Google Scholar

J. Li, J. Zhang, Y. Chen, L. Gao, X. Yan, M. Zhang, F. Wang, Y. He, W. Hu, H. Peng, Mean platelet volume modifies the contribution of homocysteine to cardiovascular disease: A real-world study. 33 (2023) 194-202. https://doi.org/10.1016/j.numecd.2022.10.013 Search in Google Scholar

G. Paul, F.A. Sreyoshi, Role of homocysteine in the development of cardiovascular disease, Nutrition Journal. 14 (2015) 10. https://doi.org/10.1186/1475-2891-14-6. Search in Google Scholar

K. Borowczyk, J. Piechocka, R. Głowacki, I. Dhar, O. Midtun, G. S. Tell, P. M. Ueland, O. Nygård, H. Jakubowski, Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial, J Intern Med. 285 (2019) 232–244. Search in Google Scholar

L. Zizhen, H. Qianqian, Y. Hongbo, L. Jiajia, W. Xiaona, Z. Rui, H. Qiuyan, X. Yanchun, L. Guanxian, L. Bin, Y. Qiongqiong, Serum homocysteine is associated with tubular interstitial lesions at the early stage of IgA nephropathy, BMC Nephrology. 23 (2022). https://doi.org/10.1186/s12882-021-02632-3. Search in Google Scholar

P. Łukasz, W. Dorota, I. Magdalena, C. Agnieszka, S. Dorota, S. Janusz, Analysis of serum homocysteine in the laboratory practice - comparison of the direct chemiluminescence immunoassay and high performance liquid chromatography coupled with fluorescent detection, Biochem Med (Zagreb). 30 (2020) 030703. Search in Google Scholar

F.A. Sreyoshi, K. Santosh, G. Paul, Measurement of homocysteine: a historical perspective, J Clin Biochem Nutr. 65 (2019) 171–177. doi: 10.3164/jcbn.19-49. Search in Google Scholar

M. Safoora, F. Masoud, Electrocatalytic oxidation and determination of homocysteine at nanotubes-modified carbon paste electrode using dopamine as a mediator, J. Serb. Chem. Soc. 78 (2013) 1595–1607. doi: 10.2298/JSC1210 19022M. Search in Google Scholar

S. Yichi, F.H. Scott, G.L.K. Samantha, C.H. Ming, In Vitro and In Vivo Enzyme Activity Screening via RNA-Based Fluorescent Biosensors for S-Adenosyl-l-homocysteine (SAH), Journal of the American Chemical Society. 138 (2016) 7040-7047. https://doi.org/10.1021/jacs.6b01621. Search in Google Scholar

A. Assareeya, C. Benya, P. Chiravoot, Development of screen printed electrode using MWCNTs–TiO2 nano-composite as a low-cost device for uric acid detection in urine, Journal of Materials Science: Materials in Electronics. 30 (2019) 2403–2412. https://doi.org/10.1007/s10854-018-0513-z. Search in Google Scholar

N. Hui-Bog, R. S. Brillians, S. Yoon-Bo, Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode, Electrochimica Acta. 139 (2014) 315-322. https://doi.org/10.1016/j.electacta.2014.07.044. Search in Google Scholar

T.E.M. Nancy, V.A. Kumary, Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Electrochimica Acta. 133 (2014) 233-240. https://doi.org/10.1016/j.electacta.2014.04.027. Search in Google Scholar

R. Mahmoud, S. Mojtaba, R.R. Hamid, Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode, Journal of Electroanalytical Chemistry. 712 (2014) 19-24. https://doi.org/10.1016/j.jelechem.2013.08.027. Search in Google Scholar

B.F. Sekli, A. Civélas, V. Castagnola, A. Tsopela, L. Mazenq, P. Gros, J. Launay, P. Temple-Boyer, PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B. 214 (2015) 1-9. https://doi.org/10.1016/j.snb.2015.03.005. Search in Google Scholar

M. Fouladgar, S. Mohammadzadeh, H. Nayeri, Electrochemical determination of homocysteine using carbon nanotubes modified paste electrode and isoprenaline as a mediator, Russian Journal of Electrochemistry. 50, (2014) 981–988. Search in Google Scholar

M. Debasis, M. Mathankumar, T.R.K. Ramasamy, Development of the PANI/MWCNT nanocomposite-based fluorescent sensor for selective detection of aqueous ammonia, ACS Omega. 5 (2020) 8414−8422. https://dx.doi.org/10.1021/acsomega.9b02885. Search in Google Scholar

B.A. Shujahadeen, M. H. Hamsan, M. F. Z. Kadir, H. J. Woo, Design of Polymer Blends Based on Chitosan:POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics, Advances in Polymer Technology, (2020) 10. https://doi.org/10.1155/2020/8586136. Search in Google Scholar

K. Divya, R. Sharrel, S. Jisha, A simple and effective method for extraction of high purity chitosan from shrimp shell waste, International Conference on Advanced Applied Science Environment Engineering. (2014) 140-145. Search in Google Scholar

X. S. Zhang, L. W. Yang, H. T. Liu, M. Zu, A novel high-content CNT-reinforced SiC matrix composite-fiber by precursor infiltration and pyrolysis process, RSC Adv. 7 (2017) 23334-23341. doi: 10.1039/C7RA03339G. Search in Google Scholar

A. Tamilselvan, K. Ganapathy, R. Ramasamy, B. Sengottuvelan, Antifouling behavior of chitosan adorned zinc oxide nanorods, RSC Adv. 6 (2016) 69206-69217. doi: 10.1039/c6ra13321e. Search in Google Scholar

V. Damini, C. Deepika, D.M. Maumita, R.R. Kumar, Y. Amit K, S. Pratima R, Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA, Journal of Applied Electrochemistry. 51 (2021) 447-462. Search in Google Scholar

N. Laura, M. A. Journot. Céline, G.L. Sandrine, Chitosan functionalization: covalent and non-covalent interactions and their characterization, Polymers. 13 (2021) 4118. https://doi.org/10.3390/polym13234118. Search in Google Scholar

C.D. Shaikat, A.A. Mohammad, U.R. Taslim, M.S. Zakir, M. Ashaduzzaman, S. Mithun, Sayed M. Shamsuddin, Preparation, characterization and performance evaluation of chitosan as an adsorbent for Remazol red, International Journal of Latest Research in Engineering and Technology. 2 (2016) 52-62. Search in Google Scholar

N.A. Rahman, S. Abu. Hanifah, N.N. Mobarak, M.S. Su’ait, A. Ahmad, L.K. Shyuan, L.T. Khoon, Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices. Europe PMC. 14 (2019). Search in Google Scholar

B. Hadi, Z. Reza, T.M. Masoud, T. Somayeh, A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles, Bioelectrochemistry. 134 (2020) 107497. https://doi.org/10.1016/j.bioelechem.2020.107497. Search in Google Scholar

Z. Reza, T. Somayeh, B. Hadi, T.M. Masoud, Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor based on gold nanostructure for detection of homocysteine, Biosensors 13 (2023) 244. https://doi.org/10.3390/bios13020244. Search in Google Scholar

H. Laleh, K. Alireza, A. Kourosh, R.N. Mehdi, A. Farhad, Determination of homocysteine using a dopaminefunctionalized graphene composite, Microchemical Journal. 165 (2021) 106124. https://doi.org/10.1016/j.microc.2021.106124. Search in Google Scholar

eISSN:
2564-615X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other