Accès libre

Instrument Classification in Musical Audio Signals using Deep Learning

 et   
03 juil. 2025
À propos de cet article

Citez
Télécharger la couverture

Agostini, G., Longari, M., & Pollastri, E. (2003). Musical Instrument Timbres Classification with Spectral Features. EURASIP Journal on Advances in Signal Processing, 2003(1), 943279. https://doi.org/10.1155/S1110865703210118 Search in Google Scholar

Borotić, G., Granoša, L., Kovačević, J. & Bagić Babac, M. (2023), Effective Spam Detection with Machine Learning, Croatian Regional Development Journal, 3(2), 43-64. https://doi.org/10.2478/crdj-2023-0007 Search in Google Scholar

Chakraborty, S. S., & Parekh, R. (2018). Improved Musical Instrument Classification Using Cepstral Coefficients and Neural Networks. In J. K. Mandal, S. Mukhopadhyay, P. Dutta, & K. Dasgupta (Eds.), Methodologies and Application Issues of Contemporary Computing Framework (pp. 123–138). Springer Singapore. https://doi.org/10.1007/978-981-13-2345-4_10 Search in Google Scholar

Deng, J. D., Simmermacher, C., & Cranefield, S. (2008). A Study on Feature Analysis for Musical Instrument Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(2), 429–438. https://doi.org/10.1109/TSMCB.2007.913394 Search in Google Scholar

Gómez-Cañón, J., Abeßer, J., & Cano, E. (2018, July). Jazz Solo Instrument Classification with Convolutional Neural Networks, Source Separation, and Transfer Learning. Search in Google Scholar

Gururani, S., Sharma, M., & Lerch, A. (2019). An Attention Mechanism for Musical Instrument Recognition. https://doi.org/10.48550/ARXIV.1907.04294 Search in Google Scholar

Han, Y., Kim, J., & Lee, K. (2017). Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(1), 208–221. https://doi.org/10.1109/TASLP.2016.2632307 Search in Google Scholar

Hernandez-Olivan, C., & Beltran, J. R. (2021). Timbre Classification of Musical Instruments with a Deep Learning Multi-Head Attention-Based Model. https://doi.org/10.48550/ARXIV.2107.06231 Search in Google Scholar

Joder, C., Essid, S., & Richard, G. (2009). Temporal Integration for Audio Classification With Application to Musical Instrument Classification. IEEE Transactions on Audio, Speech, and Language Processing, 17(1), 174–186. https://doi.org/10.1109/TASL.2008.2007613 Search in Google Scholar

Khan, M. K. S., & Al-Khatib, W. G. (2006). Machine-learning based classification of speech and music. Multimedia Systems, 12(1), 55–67. https://doi.org/10.1007/s00530-006-0034-0 Search in Google Scholar

Kratimenos, A., Avramidis, K., Garoufis, C., Zlatintsi, A., & Maragos, P. (2021). Augmentation Methods on Monophonic Audio for Instrument Classification in Polyphonic Music. 2020 28th European Signal Processing Conference (EUSIPCO), 156–160. https://doi.org/10.23919/Eusipco47968.2020.9287745 Search in Google Scholar

Ivezić, D. & Bagić Babac, M. (2023). Trends and Challenges of Text-to-Image Generation: Sustainability Perspective, Croatian Regional Development Journal, 3(1), 56-77. https://hrcak.srce.hr/file/448285 Search in Google Scholar

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A ConvNet for the 2020s. https://doi.org/10.48550/ARXIV.2201.03545 Search in Google Scholar

Mahanta, S. K., Rahman Khilji, A. F. U., & Pakray, P. (2021). Deep Neural Network for Musical Instrument Recognition Using MFCCs. Computación y Sistemas, 25(2). https://doi.org/10.13053/cys-25-2-3946 Search in Google Scholar

Park, T., & Lee, T. (2015). Musical instrument sound classification with deep convolutional neural network using feature fusion approach. https://doi.org/10.48550/ARXIV.1512.07370 Search in Google Scholar

Poje, K., Brčić, M., Kovač, M., & Bagić Babac, M. (2024), Effect of Private Deliberation: Deception of Large Language Models in Game Play. Entropy, 26(6), 524. https://doi.org/10.3390/e26060524 Search in Google Scholar

Profeta, R., & Schuller, G. (2021). End-to-End Learning for Musical Instruments Classification. 2021 55th Asilomar Conference on Signals, Systems, and Computers, 1607–1611. https://doi.org/10.1109/IEEECONF53345.2021.9723181 Search in Google Scholar

Puh, K., & Bagić Babac, M. (2023). Predicting stock market using natural language processing, American Journal of Business, 38(2), 41-61. https://www.emerald.com/insight/content/doi/10.1108/AJB-08-2022-0124/full/html, Search in Google Scholar

Racharla, K., Kumar, V., Jayant, C. B., Khairkar, A., & Harish, P. (2020). Predominant Musical Instrument Classification based on Spectral Features. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), 617–622. https://doi.org/10.1109/SPIN48934.2020.9071125 Search in Google Scholar

Rajesh, S., & Nalini, N. J. (2020). Musical instrument emotion recognition using deep recurrent neural network. Procedia Computer Science, 167, 16–25. https://doi.org/10.1016/j.procs.2020.03.178 Search in Google Scholar

Šimić, A. & Bagić Babac, M. (2024). Artificial Intelligence in Classifying and Creating Art: a Survey International Journal of Student Project Reporting, 2(1), 59 - 89. Search in Google Scholar

Taenzer, M., Mimilakis, S. I., & Abeßer, J. (2023). Deep Learning-Based Music Instrument Recognition: Exploring Learned Feature Representations. In M. Aramaki, K. Hirata, T. Kitahara, R. Kronland-Martinet, & S. Ystad (Eds.), Music in the AI Era (Vol. 13770, pp. 32–46). Springer International Publishing. https://doi.org/10.1007/978-3-031-35382-6_4 Search in Google Scholar

Targ, S., Almeida, D., & Lyman, K. (2016). Resnet in Resnet: Generalizing Residual Architectures. https://doi.org/10.48550/ARXIV.1603.08029 Search in Google Scholar

Umapathy, K., Krishnan, S., & Rao, R. K. (2007). Audio Signal Feature Extraction and Classification Using Local Discriminant Bases. IEEE Transactions on Audio, Speech and Language Processing, 15(4), 1236–1246. https://doi.org/10.1109/TASL.2006.885921 Search in Google Scholar