Accès libre

Biostimulatory Potential of Microorganisms from Rosemary (Rosmarinus officinalis L.) Rhizospheric Soil

À propos de cet article

Citez

Alina S.O., Constantiscu F., Calina Petruta C. (2015): Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Romanian Biotechnological Letters, 20(5): 10737-10750. Search in Google Scholar

Arnold N., Valentini G., Bellomaria B., Hocine L. (1997): Comparative study of the essential oils from Rosmarinus eriocalyx Jordan & Fourr. From Algeria and Rosmarinus officinalis L. from other countries. Journal of Essential Oil Research, 9(2): 167-175. Search in Google Scholar

Arora N.K., Kang S.C., Maheshwari D.K. (2001): Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81: 673-677. Search in Google Scholar

Bafana A. & Lohiya R. (2013): Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World Journal of Microbiology and Biotechnology, 29: 63-74.10.1007/s11274-012-1158-322927014 Search in Google Scholar

Beneduzi A., Ambrosini A., Passaglia L.M.P. (2012): Planth growth- promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Journal of Genetics and Molecular Biology, 35(4): 1044-1051.10.1590/S1415-47572012000600020 Search in Google Scholar

Bianco C., Imperlini E., Defez R. (2009): Legumes like more IAA. Plant Signaling and Behavior, 4: 763-765.10.4161/psb.4.8.9166280139419820305 Search in Google Scholar

Bolton M.D., Thomma B.P.H.J., Nelson B.D. (2006): Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of cosmopolitan pathology. Molecular Plant Pathology, 7: 1-16.10.1111/j.1364-3703.2005.00316.x20507424 Search in Google Scholar

Datta M., Palit R., Sengupta C., Pandit M. K., Banerjee S. (2011): Plant growth promoting rhizobacteria enhance growth and yield of chilli (Capsicum annuum L.) under field conditions. Australian Journal of Crop Science, 5(5): 531-536. Search in Google Scholar

Davies P. J. (2010): Plant Hormones: their nature, occurrence, and functions. In: Davies P.J. (eds) Plant Hormones. Springer, Dordrecht, pp. 1-5.10.1007/978-1-4020-2686-7_1 Search in Google Scholar

Etesami H., Alikhani H.A., Hosseini H.M. (2015): Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2: 72-78.10.1016/j.mex.2015.02.008448770526150974 Search in Google Scholar

Frey-Klett P., Chavatte M., Clausse M.L., Courrier S., Le Roux C., Raaijmakers J., Martinotti M.G., Pierrat J.C., Garbaye J. (2005): Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165: 317-328.10.1111/j.1469-8137.2004.01212.x15720643 Search in Google Scholar

Gomes L.T.A.S., Sêmedo R.M.A., Soares L.F., Linhares C., Ulhoa C.S., Alviano R.R.R. (2001): Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. Journal of Applied Microbiology, 90: 653-661.10.1046/j.1365-2672.2001.01294.x11309080 Search in Google Scholar

Gupta R.P., Kalia A., Kapoor S. (2007): Bioinoculants: a step towards sustainable agriculture. New India, New Delhi. ISBN 10 8189422219. Search in Google Scholar

Jayaprakashvel M., Chitra C., Mathivanan N. (2019): Metabolites of Plant Growth-Promoting Rhizobacteria for the Management of Soilborne Pathogenic Fungi in Crops. In: Singh H., Keswani C., Reddy M., Sansinenea E., García-Estrada C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore.10.1007/978-981-13-5862-3_15 Search in Google Scholar

Jensen E. S. (1987): Inoculation of pea by application of Rhizobium in planting furrow. Plant Soil, 97: 63-70.10.1007/BF02149824 Search in Google Scholar

Kaur J., Munshi G.D., Singh R.S., Koch E. (2005): Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. Journal of Phytopathology, 153: 274-279.10.1111/j.1439-0434.2005.00969.x Search in Google Scholar

King E.O., Ward M.K., Randey D.E. (1954): Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine, 44: 301-307. Search in Google Scholar

Koeberl M., Schmidt R., Ramadan E.M., Bauer R., Berg G. (2013): The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Fronttiers in Microbiology, 4: 400.10.3389/fmicb.2013.00400 Search in Google Scholar

Kumar G., Kanaujia N., Bafana A. (2012): Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiological Research, 167: 220-225.10.1016/j.micres.2011.09.001 Search in Google Scholar

Lakshmipathy R., Chandrika K., Gowda B., Balakrishna A.N., Bagyaraj D.J. (2001): Response of Saraca asoca (Roxb.) de Wilde to inoculation with Glomusm osseae, Bacillus coagulans and Trichoderma harzianum. The European Journal of Soil Biology, 21: 76-80. Search in Google Scholar

Matar S.M., El-Kazzaz S.A., Wagih E.E., El-Diwany A.I., Moustafa H.E., Abo-Zaid G.A., Abd-Elsalam H.E., Hafez E.E. (2009): Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi. Biotechnology, 8(1): 53-61. Search in Google Scholar

Menkina R.A. (1961): Rol Bacillus megaterium var phosphaticum b pitanii rastenij. Mikroorganizmi i efektivnoje plodprodije poĉv. Akademii Nauk SSSR, 238-245. (In Russian) Search in Google Scholar

Milagres A.F.M., Machuca A., Napoleao D. (1999): Detection of siderophore production from several fungi and bacterial by a modiWcation of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37: 1-6.10.1016/S0167-7012(99)00028-7 Search in Google Scholar

Nakashima K. & Yamaguchi-Shinozaki K. (2006): Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiology Plantarum, 126: 62-71.10.1111/j.1399-3054.2005.00592.x Search in Google Scholar

Narula N., Kothe E., Behl R.K. (2009): Role of root exudates in plant-microbe interactions. The Journal of Applied Botany and Food Quality, 82: 122-130. Search in Google Scholar

Oluwatuyi M., Kaatz G.W., Gibbons S. (2004): Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 65(24): 3249-3254.10.1016/j.phytochem.2004.10.00915561190 Search in Google Scholar

Pidwirny M. (2006): Biogeochemical cycling: Inputs and outputs of nutrients to ecosystems. Fundamentals of Physical Geography, 2nd Edition. http://www.physicalgeography.net/fundamentals/9p.html. Search in Google Scholar

Pikovskaya R. I. (1948): Mobilization of phosphorous in soil in connection with vital activity of some microbial species. Microbiology, 17: 362-370. Search in Google Scholar

Pintore G., Usai M., Bradesi P., Juliano C., Boatto G., Tomi F., Chessa M., Cerri R., Casanova J. (2002): Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oil from Sardinia and Corsica. Flavour and Fragrance Journal, 17: 15-19.10.1002/ffj.1022 Search in Google Scholar

Prasad M.R., Srinivasan R., Chaudhary M., Choudhary M., Jat L.K. (2019): Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture: Perspectives and Challenges. Food Security and Environmental Management, 129-157. Search in Google Scholar

Sarangi N.P.A., Fernando W.G.D., Rashid K.Y., Kievit T. (2010): The role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Science and Technology, 20: 875-890.10.1080/09583157.2010.484484 Search in Google Scholar

Shameer S. & Prasad T.N.V.K.V. (2018): Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, 84: 603-615.10.1007/s10725-017-0365-1 Search in Google Scholar

Shamseldin M.J., Sadowsky M. El-S, Sun C. (2008): Molecular biodiversity and identification of free living Rhizobium strains from diverse Egyptian soils as assessed by direct isolation without trap hosts. American-Eurasian Journal of Agricultural and Environmental Sciences, 4: 541-549. Search in Google Scholar

Soriano M., Diaz P., Pastor F.I.J. (2000): Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Current Microbiology, 50: 114-118.10.1007/s00284-004-4382-815717229 Search in Google Scholar

Stamenov D., Jarak M., Đurić S., Hajnal-Jafari T. (2011): The increase of microbiological activity of acid soil by means of inoculation and liming. Economics of agriculture, 58(1): 201-211. Search in Google Scholar

Suresh A., Pallavi P., Srinivas P., Kumar V.P., Chandra S.J. (2010): Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants. African Journal of Microbiology Research, 4: 1491-1494. Search in Google Scholar

Toure Y., Ongena M., Jacques P., Guiro A., Thonart P. (2004): Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96: 1151-1160.10.1111/j.1365-2672.2004.02252.x15078533 Search in Google Scholar

Tsutomu A. (2019): Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of Pest Science, 44(4): 275-281. Search in Google Scholar

Wang W., Vinocur B., Altman A. (2003): Plant responses to drought, salinity andextreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.10.1007/s00425-003-1105-514513379 Search in Google Scholar

Wen Z. L., Yang M. K., Du M. H., Zhong Z. Z., Lu Y. T., Wang G. H., et al. (2019): Enrichments/derichments of root-associated bacteria related to plant growth and nutrition caused by the growth of an EPSPS-transgenic maize line in the field. Frontiers in Microbiology, 10: 1335.10.3389/fmicb.2019.01335659146131275269 Search in Google Scholar

Whang K.S., Lee J.C., Lee H.R., Han S.I., Chung S.H. (2014): Terriglobus tenax sp. nov., an exopolysaccharide-producing Acidobacterium isolated from rhizosphere soil of a medicinal plant. International Journal of Systematic and Evolutionary Microbiology, 64: 431-437.10.1099/ijs.0.053769-024096353 Search in Google Scholar

Whipps J.M. (2001): Microbial interactions and biocontrol in the rhizosphere. The Journal of Experimental Botany, 52: 487-511.10.1093/jxb/52.suppl_1.487 Search in Google Scholar

Zhang H.Y., Xue Q.H., Shen G.H., Wang D.S. (2013): Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. Journal of Applied Ecology, 24: 2287-2293. Search in Google Scholar

Zhao K., Penttinen P., Chen Q., Guan T.W., Lindstrom K., Ao X.L., Zhang L.L., Zhang X.P. (2012): The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties. Applied Microbiology and Biotechnology, 94: 1321-1335.10.1007/s00253-011-3862-622286515 Search in Google Scholar

Zhao Z., Zhang X., Tan Z., Guo J., Zhu H. (2013): Isolation and identification of cultivable myxobacteria in the rhizosphere soils of medicinal plants. Acta Microbiologica Sinica, 53: 657-668. Search in Google Scholar