Accès libre

New therapeutic strategies based on molecularly targeted therapy in glioblastoma – a case report and review of the literature

À propos de cet article

Citez

1. Grimm SA, Chamberlain MC. Anaplastic astrocytoma. CNS Oncol. 2016;5(3):145-57.10.2217/cns-2016-0002604263227230974 Search in Google Scholar

2. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073-113.10.1093/neuonc/noaa106759455732328653 Search in Google Scholar

3. Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, Stockhammer F, et al. NOA-04 randomized Phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol. 2009;27(35):5874-80.10.1200/JCO.2009.23.649719901110 Search in Google Scholar

4. Saha D, Wakimoto H, Peters CW, Antoszczyk SJ, Rabkin SD, Martuza RL. Combinatorial effects of VEGFR kinase inhibitor axitinib and oncolytic virotherapy in mouse and human glioblastoma stem-like cell models. Clin Cancer Res. 2018;24(14):3409-22.10.1158/1078-0432.CCR-17-1717605008529599413 Search in Google Scholar

5. Davis ME. Glioblastoma: Overview of disease and treatment. Clin J Oncol Nurs. 2016;20(5 Suppl):S2-8.10.1188/16.CJON.S1.2-8512381127668386 Search in Google Scholar

6. Perry JR Laperriere N, O’Callaghan CJ, et al. Trial investigators short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027-37.10.1056/NEJMoa161197728296618 Search in Google Scholar

7. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985-96.10.1158/1055-9965.EPI-14-0275418500525053711 Search in Google Scholar

8. Wang GW, Li BM. (2020). Efficacy of surgery for the treatment of astrocytoma: A protocol of systematic review and meta-analysis. Medicine. 2020;99(23).10.1097/MD.0000000000020485 Search in Google Scholar

9. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980;303:1323-9.10.1056/NEJM1980120430323037001230 Search in Google Scholar

10. Chang CH, Horton J, Schoenfeld D, Salazer O, Perez Tamayo R, Kramer S, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer. 1983;52:997-1007.10.1002/1097-0142(19830915)52:6<997::AID-CNCR2820520612>3.0.CO;2-2 Search in Google Scholar

11. EORTC Brain Tumor Group. Effect of CCNU on survival rate of objective remission and duration of free interval in patients with malignant brain glioma –final evaluation. E.O.R.T.C. Brain Tumor Group. Eur J Cancer. 1978;14:851-6.10.1016/0014-2964(78)90100-7 Search in Google Scholar

12. EORTC Brain Tumor Group. Evaluation of CCNU, VM26 plus CCNU, and procarbazine in supratentorial brain gliomas. Final evaluation of a randomized study. European Organization for Research on Treatment of Cancer (EORTC) Brain Tumor Group. J Neurosurg. 1981;55:27-31.10.3171/jns.1981.55.1.00277017081 Search in Google Scholar

13. Edwards MS, Levin VA, Wilson CB. Brain tumor chemotherapy: an evaluation of agents in current use for phase II and III trials. Cancer Treat Rep. 1980;64:1179-205. Search in Google Scholar

14. Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, et al. Major challenges and potential microenvironment-targeted therapies in glioblastoma. Int J Mol Sci. 2017;18(12):2732.10.3390/ijms18122732575133329258180 Search in Google Scholar

15. Wang N, Jain RK, Batchelor TT. New directions in anti-angiogenic therapy for glioblastoma. Neurotherapeutics. 2017;14(2):321-32.10.1007/s13311-016-0510-y539898528083806 Search in Google Scholar

16. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709-22.10.1056/NEJMoa130834524552318 Search in Google Scholar

17. Wick W, Cloughesy TF, Nishikawa R, Mason W, Saran F, Henrikson R, et al. Tumor response based on adapted Macdonald criteria and assessment of pseudoprogression (PsPD) in the phase III AVAglio trial of bevacizumab (Bv) plus temozolomide (T) plus radiotherapy (RT) in newly diagnosed glioblastoma (GBM). J Clin Oncol. 2013;31(15).10.1200/jco.2013.31.15_suppl.2002 Search in Google Scholar

18. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699-708.10.1056/NEJMoa1308573420104324552317 Search in Google Scholar

19. Bayer Healthcare Pharmaceuticals Inc. Regorafenib (Stivarga). U.S Food and Drug Administration Prescribing Information; 2019. Search in Google Scholar

20. Bayer AG. Regorafenib (Stivarga). Summary of product characteristics. European Medicines Agency; 2018. Search in Google Scholar

21. Thomas AA, Omuro A. Current role of anti-angiogenic strategies for glioblastoma. Curr Treat Options Oncol. 2014;15:551-66.10.1007/s11864-014-0308-225173555 Search in Google Scholar

22. Huang WJ, Chen WW, Zhang X. Glioblastoma multiforme: effect of hypoxia and hypoxia inducible factors on therapeutic approaches. Oncol Lett. 2016;12 (2016):2283-8.10.3892/ol.2016.4952503835327698790 Search in Google Scholar

23. Lombardi G, De Salvo GL, Brandes AA, Eoli M, Ruda R, Faedi M, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019;20:110-9.10.1016/S1470-2045(18)30675-230522967 Search in Google Scholar

24. Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, et al. GBM AGILE Network. Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE. Clin Cancer Res. 2018;24(4):737-43.10.1158/1078-0432.CCR-17-076428814435 Search in Google Scholar

25. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481-98.10.1056/NEJMoa1402121453001126061751 Search in Google Scholar

26. Vizcaíno MA, Shah S, Eberhart CG, Rodriguez FJ. Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum Pathol. 2015;46(9):1323-30.10.1016/j.humpath.2015.05.014470309526190195 Search in Google Scholar

27. Gao M, Yang J, Gong H, Lin Y, Liu J. Trametinib Inhibits the Growth and Aerobic Glycolysis of Glioma Cells by Targeting the PKM2/c-Myc Axis. Front Pharmacol. 2021;12:760055.10.3389/fphar.2021.760055856643634744739 Search in Google Scholar

28. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, von Bubnoff N. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53-64.10.1016/S1470-2045(21)00578-734838156 Search in Google Scholar

29. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011-22.10.1016/S1470-2045(19)30277-3662820231151904 Search in Google Scholar

30. Schreck KC, Allen AN, Wang J, Pratilas CA. Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neurooncol Adv. 2020;2(1):138.10.1093/noajnl/vdaa138766844633235998 Search in Google Scholar

31. Maxwell MJ, Arnold A, Sweeney H, Chen L, Lih TM, Schnaubelt M et al. Unbiased proteomic and phosphoproteomic analysis identifies response signatures and novel susceptibilities after combined MEK and mTOR inhibition in BRAFV600E mutant glioma. Mol Cell Proteomics. 2021;20:10023.10.1016/j.mcpro.2021.100123836384034298159 Search in Google Scholar

32. Arnold A, Yuan M, Price A, Harris L, Eberhart CG, Raabe EH. Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro Oncol. 2020;22(4):563-74.10.1093/neuonc/noz230715865531841591 Search in Google Scholar

33. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011-22.10.1016/S1470-2045(19)30277-3 Search in Google Scholar

34. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib for children with plexiform neurofibromas. Lancet Oncol. 2020;18(2):e69-42.10.1016/S1470-2045(17)30009-828089105 Search in Google Scholar

35. Burger MC, Ronellenfitsch MW, Lorenz NI, Wagner M, Voss M, Capper D, et al. Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncol Rep. 2017;38(6):3291-6.10.1093/neuonc/nox168.877 Search in Google Scholar

36. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694-703.10.1056/NEJMoa1210093354929523020132 Search in Google Scholar

37. Grossauer S, Koeck K, Murphy NE, Meyers ID, Daynac M, Truffaux N, et al. Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model. Oncotarget. 2016;7(46):75839-53.10.18632/oncotarget.12419534278227713119 Search in Google Scholar

38. Di Stefano AL, Fucci A, Frattini V, Labussiere M, Mokhtari K, Zoppoli P, et al. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma. Clin Cancer Res. 2015;21(14):3307-17.10.1158/1078-0432.CCR-14-2199450621825609060 Search in Google Scholar

39. Lassman AB, Sepúlveda-Sánchez JM, Cloughesy TF, Gil-Gil MJ, Puduvalli VK, Raizer JJ, et al. Infigratinib in patients with recurrent gliomas and FGFR alterations: A multicenter phase II study. Clin Cancer Res. 2022;28(11):2270-7.10.1158/1078-0432.CCR-21-2664916770235344029 Search in Google Scholar

40. Lasorella A, Sanson M, Iavarone A. FGFR-TACC gene fusions in human glioma. Neuro Oncol. 2017;19(4):475-83.10.1093/neuonc/now240 Search in Google Scholar

41. Torre M, Vasudevaraja V, Serrano J, DeLorenzo M, Malinowski S, Blandin AF, et al. Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun. 2020;8(1):107.10.1186/s40478-020-00980-z736264632665022 Search in Google Scholar

42. Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann Oncol. 2019;30.10.1093/annonc/mdz384685981731738428 Search in Google Scholar

43. Mayr L, Guntner AS, Madlener S, Schmook MT, Peyrl A, Azizi AA, et al. Cerebrospinal fluid penetration and combination therapy of entrectinib for disseminated ROS1/NTRK-fusion positive pediatric high-grade glioma. J Pers Med. 2020;10(4):290.10.3390/jpm10040290776648333353026 Search in Google Scholar

44. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731-47.10.1038/s41571-018-0113-0641950630333516 Search in Google Scholar

45. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271-82.10.1016/S1470-2045(19)30691-6746163031838007 Search in Google Scholar

46. Doz F, van Tilburg CM, Geoerger B, Højgaard M, Øra I, Boni V, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022;24(6):997-1007.10.1093/neuonc/noab274915944234850167 Search in Google Scholar

47. Garcia-Foncillas J, Bokemeyer C, Italiano A, Keating K, Paracha N, Fellous M, et al. Indirect treatment comparison of larotrectinib versus entrectinib in treating patients with TRK gene fusion cancers. Cancers (Basel). 2022;14(7):1793.10.3390/cancers14071793899745735406565 Search in Google Scholar

48. Bagchi A, Orr BA, Campagne O, Dhanda S, Nair S, Tran Q, et al. Lorlatinib in a child with ALK-fusion-positive high-grade glioma. N Engl J Med. 2021;385(8):761-3.10.1056/NEJMc2101264867268234407349 Search in Google Scholar

49. Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, Shah N, et al. Rare but Recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin Cancer Res. 2018;24(24):6471-82.10.1158/1078-0432.CCR-18-1052629521430171048 Search in Google Scholar

50. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18(12):1590-9.10.1016/S1470-2045(17)30680-0577723329074098 Search in Google Scholar

eISSN:
2300-6676
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy