Accès libre

Dynamic Behaviours Review of the Jetty Structure to Be Declared as Building Functional Suitability

, ,  et   
17 mars 2025
À propos de cet article

Citez
Télécharger la couverture

McCRUM, D.: Development of dynamic structural testing to current state-of-the-art hybrid testing. Structural Engineer, vol. 92, no. 11, pp. 46–51, 2014. Search in Google Scholar

INDONESIAN MINISTER OF ENVIRONMENT DECREE No. 49: Vibration Level Standards. Indonesia, 1996. Search in Google Scholar

BSN: SNI 2847:2019, Structural Concrete Requirements for Building Construction. Jakarta, Indonesia: National Standardization Agency, 2019. Search in Google Scholar

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO-2631-2:1989, Evaluation of human exposure to whole-body vibration, Part 2: Continuous and shock-induced vibration in buildings (1 Hz–80 Hz). 1989. Search in Google Scholar

HECHLER, O. – FELDMANN, M. – HEINEMEYER, C. – GALANTI, F.: Design guide for floor vibrations. Built Environ, no. September, pp. 3–5, 2008. Search in Google Scholar

FELDMANN, M. et al.: Design of floor structures for human-induced vibrations. vol. 3, 2009. Search in Google Scholar

BURRUS, C. S.: Fast Fourier Transforms Collection Editor. 1991. Search in Google Scholar

COOLEY, J. W. – LEWIS, P. A. W. – WELCH, P. D.: The Fast Fourier Transform and its Applications. IEEE Transactions on Education, vol. 12, no. 1, pp. 27–34, 1969. doi: 10.1109/TE.1969.4320436. Search in Google Scholar

HECKBERT, P.: Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm. Notes Computer Graphics, vol. 3, no. 2, pp. 15–463, 1995. Search in Google Scholar

KHOERI, H. – ALISJAHBANA, S. W.: Pemeriksaan Getaran Struktur dan Rekomendasi Perkuatan untuk Peningkatan Kapasitas Beban dan Pengurangan Getaran. Konstruksia, vol. 15, no. 1, p. 79, Dec. 2023. doi: 10.24853/jk.15.1.79-96. Search in Google Scholar

KHOERI, H. – ALISJAHBANA, S. W. – WIDJAJAKUSUMA, J. – NAJID, N.: Deflection Estimation of Slabs to Calculate Load Capacity with High Accuracy Using Vibration Testing. Konstruksia, vol. 14, no. 2, pp. 175–188, Jul. 2023. doi: 10.24853/jk.14.2.175-188. Search in Google Scholar

DIRECTORATE GENERAL OF HIGHWAYS: Guidelines for Construction and Buildings Pt T-05-2002-B, Assessment of Bridge Conditions for Superstructures by Vibration Testing. Jakarta, Indonesia: Directorate General of Highways, 2002. Search in Google Scholar

PURBOYO, A. H. – ZARKASI, I.: Vibration Data Acquisition of Bridge Dynamic Testing. Jurnal HPJI, vol. 7, no. 2, pp. 79–96, 2021. doi: 10.26593/jhpji.v7i2.5053.79-96. Search in Google Scholar

MIRCEA, S. – DELIA, D. – RALUCA, N.: Factors Concerning the Dynamics of Footbridges and Methods for Improving Pedestrians’ Comfort. Ovidius University Annals of Constanta - Series Civil Engineering, vol. 23, no. 1, pp. 16–24, Dec. 2021. doi: 10.2478/ouacsce-2021-0002. Search in Google Scholar

PAZ, M.: Structural Dynamics. Boston, MA: Springer US, 1990. doi: 10.1007/978-1-4615-7918-2. Search in Google Scholar

BAI, Y. – DONG XU, Z.: Dynamics of Structures. 1st ed. New York: Wiley, 2019. doi: 10.1002/9781119605775. Search in Google Scholar

BUWONO, H. K. et al.: Effects of Inclination Angle and Height of Blast Load on the Dynamic Behavior of Floor Slabs with Stiffening Beams. Civil and Environmental Engineering, vol. 20, no. 1, pp. 68–77, Jun. 2024. doi: 10.2478/cee-2024-0006. Search in Google Scholar

HO, S. – MOHTADI, A. – DAUD, K. – LEONARDS, U. – HANDY, T. C.: Using smartphone accelerometry to assess the relationship between cognitive load and gait dynamics during outdoor walking. Sci Rep, vol. 9, no. 1, Dec. 2019. doi: 10.1038/s41598-019-39718-w. Search in Google Scholar

WANG, L. – HE, H. – LI, S.: Structural vibration performance test based on smart phone and improved comfort evaluation method. Measurement, vol. 203, p. 111947, Nov. 2022. doi: 10.1016/j.measurement.2022.111947. Search in Google Scholar