Accès libre

Parametric Study of Drilling Method Performed on One-Way Post-Tensioned Slabs

À propos de cet article

Citez

SUCHARDA, O. – MARCALIKOVA, Z. – GANDEL, R.: Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement. Materials 2022, 15, 5707, https://doi.org/10.3390/ma15165707. Search in Google Scholar

HOLÝ, M. – ČÍTEK, D. – VRÁBLÍK, L.: The Experimental Timber–UHPC Composite Bridge. Sustainability, 2021, 13, 4895, https://doi.org/10.3390/su13094895. Search in Google Scholar

BUJŇÁKOVÁ, P.: Anchorage System in Old Post-tensioned Precast Bridges. Civil and Environmental Engineering, Vol. 16, Iss. 2, 2020, pp. 379-387, https://doi.org/10.2478/cee-2020-0038. Search in Google Scholar

DAOU, H. – RAPHAEL, W.: Ensemble Tree Machine Learning Models for Improvement of Eurocode 2 Creep Model Prediction. Civil and Environmental Engineering, Vol. 18, Iss. 1, 2022, pp. 174-184, https://doi.org/10.2478/cee-2022-0016. Search in Google Scholar

GALVÃO, N. – MATOS, J. C. – HAJDIN, R. – FERREIRA, L. – STEWART, M. G.: Impact of construction errors on the structural safety of a post-tensioned reinforced concrete bridge. Engineering Structures, Vol. 267, 2022, 114650, https://doi.org/10.1016/j.engstruct.2022.114650. Search in Google Scholar

DRUSA, M. – MIHALIK, J. – MUZIK, J. – GAGO, F. – STEFANIK, M. – RYBAK, J.: The Role of Geotechnical Monitoring at Design of Foundation Structures and their Verification – Part 2. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 681-689, https://doi.org/10.2478/cee-2021-0067. Search in Google Scholar

BRACHACZEK, W. – CHLEBOŚ, A. – GIERGICZNY, Z.: Influence of Polymer Modifiers on Selected Properties and Microstructure of Cement Waterproofing Mortars. Materials 14, 2021, 7558, https://doi.org/10.3390/ma14247558. Search in Google Scholar

GAGO, F. – VALLETTA, A. – MUZIK, J.: Formulation of a Basic Constitutive Model for Fine - Grained Soils Using the Hypoplastic Framework. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 450-455, https://doi.org/10.2478/cee-2021-0047. Search in Google Scholar

PARIVALLAL, S. – RAVISANKAR, K. – NAGAMANI, K. – KESAVAN, K.: Core-drilling technique for in-situ stress evaluation in concrete structures. Exp Tech, 35, 2011, pp. 29–34, https://doi.org/10.1111/j.1747-1567.2010.00622.x. Search in Google Scholar

ZANINI, M. A. – FALESCHINI, F. – PELLEGRINO, C.: New trends in assessing the prestress loss in post-tensioned concrete bridges. Front. Built Environ, 8, 2022, 956066, doi: 10.3389/ fbuil.2022.956066. Open DOISearch in Google Scholar

INNOCENZI, R. D. – NICOLETTI, V. – AREZZO, D. – CARBONARI, S. – GARA, F. – DEZI, L.: A Good Practice for the Proof Testing of Cable-Stayed Bridges. Appl. Sci. 12, 2022, 3547, https://doi.org/10.3390/app12073547. Search in Google Scholar

KRAĽOVANEC, J. – BAHLEDA, F. – PROKOP, J. – MORAVČÍK, M. – NESLUŠAN, M.: Verification of Actual Prestressing in Existing Pre-Tensioned Members. Appl. Sci. 11, 2021, 5971, https://doi.org/10.3390/app11135971. Search in Google Scholar

BAGGE, N. – NILIMAA, J. – ELFGREN, L.: In-situ Methods to Determine Residual Prestress Forces in Concrete Bridges. Eng. Struct. 135, 2017, pp. 41–52, https://doi.org/10.1016/j.engstruct.2016.12.059. Search in Google Scholar

MATHAR, J.: Determination of initial stresses by measuring the deformation around drilled holes. Transactions of ASME, Vol. 56, Iss. 4, 1934, pp. 249-254. Search in Google Scholar

DENG, N. C. – TANG, P. F.: Research on In Situ Stress Measurements in Reinforced Concrete Beams Based on the Core-Drilling Method. Advances in Civil Engineering, Vol. 2020, Article ID 8832614, 11 pages, 2020, https://doi.org/10.1155/2020/8832614. Search in Google Scholar

JOCH, R. – ŠAJGALÍK, M. – CZÁN, A. – HOLUBJÁK, J. – CEDZO, M. – ČEP, R.: Effects of Process Cutting Parameters on the Ti-6Al-4V Turning with Monolithic Driven Rotary Tool. Materials 15, 2022, 5181, https://doi.org/10.3390/ma15155181. Search in Google Scholar

CZÁN, A. – JOCH, R. – ŠAJGALÍK, M. – HOLUBJÁK, J. – HORÁK, A. – TIMKO, P. – VALÍČEK, J. – KUŠNEROVÁ, M. – HARNIČÁROVÁ, M.: Experimental Study and Verification of New Monolithic Rotary Cutting Tool for an Active Driven Rotation Machining. Materials 15, 2022, 1630, https://doi.org/10.3390/ma15051630. Search in Google Scholar

FIB, Comité Euro – International du Béton: Strategies for Testing and Assessment of Concrete Structures. Guidance Report. fib Bulletin No. 243; 1998. Search in Google Scholar

TP 059: Assignment and Performing of Bridge Diagnostics. SSC Bratislava 2012. Available on: https://www.ssc.sk/files/documents/technicke-predpisy/tp/tp_059.pdf. In Slovak language. Search in Google Scholar

JGJ/T 384-2016: Technical Specification for Testing Concrete Strength with Drilled Core Method. JGJ/T 384-2016, China, 2016. Search in Google Scholar

KRAĽOVANEC, J. – PROKOP, J.: Indirect methods for determining the state of prestressing. Transportation Research Procedia, Vol. 55, 2021, pp. 1236-1243, https://doi.org/10.1016/j.trpro.2021.07.105. Search in Google Scholar

MCGINNIS, M. J. – PESSIKI, S.: Experimental Study of the Core-Drilling Method for Evaluating of In Situ Stresses in Concrete Structures. Journal of Materials in Civil Engineering, Vol. 28, Iss. 2, 2016, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001294. Search in Google Scholar

MCGINNIS, M. J. – PESSIKI, S. – TURKER, H.: Application of Three-dimensional Digital Image Correlation to the Core-drilling Method. Experimental Mechanics, 45 (4), 2005, doi: 10.1007/ BF02428166. Open DOISearch in Google Scholar

MCGINNIS, M. J. – PESSIKI, S.: Experimental and Numerical Development of the Core-Drilling Method for the Nondestructive Evaluation of In-situ Stresses in Concrete Structures. 2006, ATLSS Reports, 05-05, https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp-4308206. Search in Google Scholar

AZIZINAMINI, A. – KEELER, B. J. – ROHDE, J. – MEHRABI, A. B.: Application of a New Nondestructive Evaluation Technique to a 25-Year-Old Prestressed Concrete Girder. PCI Journal, Vol. 41 (3), 1996, pp. 82-95. Search in Google Scholar

AGREDO CHÁVEZ, A. – GONZALEZ, J. – SAS, G. – ELFGREN, L. – BIANCHI, S. – BIONDINI, F. et al.: Available Tests to evaluate Residual Prestressing Forces in Concrete Bridges. IABSE Symposium Prague 2022, Challenges for Existing and Oncoming Structures - Report, International Association for Bridge and Structural Engineering, International Association for Bridge and Structural Engineering, 2022, pp. 1123-1131. Search in Google Scholar

TRAUTNER, C. – MCGINNIS, M. J. – PESSIKI, S.: Analytical and numerical development of the incremental core-drilling method of non-destructive determination of in-situ stresses in concrete structures. The Journal of Strain Analysis for Engineering Design, 45 (8), 2010, pp. 1-12, doi: 10.1243/03093247JSA600. Open DOISearch in Google Scholar

ČERVENKA, V. – JENDELE, L. – ČERVENKA, J.: ATENA Program Documentation - Part 1. Theory, Červenka Consulting, Prague, Czech Republic, 2020, www.cervenka.cz/assets/files/atena-pdf/ATENA_Theory.pdf. Search in Google Scholar

ČERVENKA, J. – PROCHÁZKOVÁ, Z. – SAJDLOVÁ, T.: ATENA Program Documentation - Part 4-2. Tutorial for Program ATENA 3D, Červenka Consulting, Prague, Czech Republic, 28 September 2017, www.cervenka.cz/assets/files/atena-pdf/ATENA-Engineering-3D_Tutorial.pdf. Search in Google Scholar

ČERVENKA, V. – ČERVENKA, J.: ATENA Program Documentation - Part 2-2. User’s Manual for ATENA 3D, Červenka Consulting, Prague, Czech Republic, November 2017, www.cervenka.cz/assets/files/atena-pdf/ATENA-Engineering-3D_Users_manual.pdf. Search in Google Scholar