À propos de cet article

Citez

[1] Bridge testing guide. SETRA. Road Bridges and Footbridges, 2006, p. 164. Search in Google Scholar

[2] BUJŇÁKOVÁ, P. – STRIEŠKA, M.: Development of precast concrete bridges during the last 50 years in Slovakia. Procedia Engineering, Vol. 192, 2017, pp. 75-79, https://doi.org/10.1016/j.proeng.2017.06.013. Search in Google Scholar

[3] Fib Bulletin No. 99: Conceptual Design of Precast Concrete Bridge Superstructures, technical Report. Fédération Internationale du Béton, 2021, 126 p. Search in Google Scholar

[4] BUJŇÁK, J. – BUJŇÁKOVÁ, P. – JEDRASZAK, B.: Modelling and verification of bridge behaviour. MATEC Web of Conferences, Vol. 174, 2018, 10 p., https://doi.org/10.1051/matecconf/201817403002. Search in Google Scholar

[5] BOUCHAIR, A. – BUJNAK, J. – DURATNA, P. – LACHAL, A.: Modeling of the Steel-Concrete Push-Out Test. Procedia Engineering, Vol. 40, 2012, pp. 102–107.10.1016/j.proeng.2012.07.063 Search in Google Scholar

[6] KRAĽOVANEC, J. – MORAVČÍK, M. – JOŠT, J.: Analysis of Prestressing in Precast Prestressed Concrete Beams. Civil and Environmental Engineering, Vol. 17, Iss. 1, 2021, pp. 184-191, https://doi.org/10.2478/cee-2021-0019. Search in Google Scholar

[7] PERKOWSKI, Z. – TATARA, K.: The Use of Dijkstra’s Algorithm in Assessing the Correctness of Imaging Brittle Damage in Concrete Beams by Means of Ultrasonic Transmission Tomography. Materials, Vol. 13, Iss. 3, 2020, 37 p., https://doi.org/10.3390/ma13030551. Search in Google Scholar

[8] VIČAN, J. – GOCÁL, J. – ODROBIŇÁK, J. – KOTEŠ, P.: Existing steel bridges evaluation. Civil and Environmental Engineering, Vol. 12, Iss. 2, 2016, pp. 103-110, https://doi.org/10.1515/cee-2016-0014. Search in Google Scholar

[9] SŁOMKA-SŁUPIK, B. – PODWÓRNY, J. – GRYNKIEWICZ-BYLINA, B. – SALAMAK, M. – BARTOSZEK, B. – DRZYZGA, W. – MAKSARA, M.: Concrete Examination of 100-Year-Old Bridge Structure above the Kłodnica River Flowing through the Agglomeration of Upper Silesia in Gliwice: A Case Study. Materials, Vol. 14, Iss. 4, 2021, 32 p., https://doi.org/10.3390/ma14040981. Search in Google Scholar

[10] VIČAN, J. – ODROBIŇÁK, J. – GOCÁL, J.: Determination of Road Bridge Load-Carrying Capacity. Civil and Environmental Engineering, Vol. 17, Iss. 1, 2021, pp. 286-297, DOI: 10.2478/cee-2021-0030. Open DOISearch in Google Scholar

[11] LANTSOGHT, E. O. L. – VAN DER VEEN, C. – HODIJK, D. A. – DE BOER, A.: State/of/the art on load testing of concrete bridges. Engineering Structures, Vol. 150, 2017, pp. 231-241.10.1016/j.engstruct.2017.07.050 Search in Google Scholar

[12] SCHMIDT, J. W. – HALDING, P. S. – JENSEN, T. W – ENGELUND, S.: High magnitude loading of concrete bridges. Chapter SP-323-9 in Evaluation of concrete bridge behaviour through load testing - International perspectives. American Concrete Institute, 2018, pp. 9.1-9.20. Search in Google Scholar

[13] PN–S–10040:1999 Bridge structures. Reinforced concrete and prestressed concrete structures. Requirements and tests (in Polish). Search in Google Scholar

[14] FILAR, L. – KALUZA, J. – WAZOWSKI, M.: Bridge load test in Poland today and tomorrow: The standard and new ways in measuring and research to ensure transport safety. Procedia Engineering, Vol. 192, 2017, pp. 183-188.10.1016/j.proeng.2017.06.032 Search in Google Scholar

[15] STN 73 6209/a: Loading test of Bridges. Praha, 1990. Search in Google Scholar

[16] BUJŇÁK, J. – BUJŇÁKOVÁ, P.: Load test on Highway bridge at the highway construction D1 Hričovské Podhradie – Lietavská Lúčka. Technical Report. University of Žilina, 2018.10.1051/matecconf/201819602020 Search in Google Scholar