À propos de cet article

Citez

[1] YOUNES, M. K. - SULEIMAN, G. - ABUSHAMMALA, M. F. M. - OMARI, K. AL.: Modelling of Traffic Noise along Urban Corridor: A Case Study of Amman. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 456–464.10.2478/cee-2021-0048 Search in Google Scholar

[2] ARGALASOVA, L. - KIMAKOVA, T. - PANULINOVA, E. - FILOVA, A. - PULTZNEROVA, A. -JURKOVICOVA, J.: Sleep Disturbance and Noise Annoyance and Environmental Noise Exposure in Residents of Two Major Slovakian Cities. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 690–697.10.2478/cee-2021-0068 Search in Google Scholar

[3] YOUNES, M. N. - HEIKAL, A. Z. - KOTB, A. S. - ZOHNY, H. N.: Assessment of Train Noise at Platforms in Underground Metro Stations. Civil and Environmental Engineering, Vol. 17, Iss. 1, 2021, pp. 125–138.10.2478/cee-2021-0014 Search in Google Scholar

[4] SHAID SUJON, M. A. - ISLAM, A. - NADIMPALLI, V. K.: Damping and sound absorption properties of polymer matrix composites: A review. Polymer Testing, Vol. 104, 2021, p. 107388.10.1016/j.polymertesting.2021.107388 Search in Google Scholar

[5] LIU, X. - MA, X. - YU, C. - XIN, F.: Sound absorption of porous materials perforated with holes having gradually varying radii. Aerospace Science and Technology, Vol. 120, 2022, p. 107229.10.1016/j.ast.2021.107229 Search in Google Scholar

[6] MOHAMMAD, N. Z. - SHYONG, Y. Z. - HARON, Z. - ISMAIL, M. - MOHAMED, A. - KHALID, N. H. A.: The Feasibility of Rock Wool Waste Utilisation in a Double-Layer Concrete Brick for Acoustic: A Conceptual Review. Journal of Computational and Theoretical Nanoscience, Vol. 17, No. 2, 2020, pp. 635–644.10.1166/jctn.2020.8763 Search in Google Scholar

[7] BURNHAM, J. F.: Scopus database: A review. Biomedical Digital Libraries, Vol. 3, 2006, pp. 1–8.10.1186/1742-5581-3-1 Search in Google Scholar

[8] MEHO, L. I.: Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics, Vol. 13, No. 1, 2019, pp. 419–433.10.1016/j.joi.2019.02.006 Search in Google Scholar

[9] TAYLOR, H. O.: A Direct Method of Finding the Value of Materials as Sound Absorbers. Phys. Rev., Vol. 2, No. 4, Oct. 1913, pp. 270–287.10.1103/PhysRev.2.270 Search in Google Scholar

[10] CHUNG, J. Y. - BLASER, D. A.: Transfer function method of measuring in-duct acoustic properties. I. Theory. Journal of the Acoustical Society of America, Vol. 68, No. 3, 1980, pp. 907–913.10.1121/1.384778 Search in Google Scholar

[11] BEA, Gross Domestic Product, Fourth Quarter and Annual 2018 (Initial Estimate). BEA’s Web site, 2019. Search in Google Scholar

[12] The World Bank, United Nations Population Division. World Urbanization Prospects: The 2018 Revision, 2018. Search in Google Scholar

[13] UNESCO, Science, technology and innovation: research and experimental development, UNESCO Institute for Statistics (UIS), 2021. Available: http://data.uis.unesco.org/Index.aspx?DataSetCode=SCN_DS. [Accessed: 06-May-2021]. Search in Google Scholar

[14] KRESNO, W. S. - WARDANI, S. P. R. - SUSILA, E. - PRANOWO: Numerical simulation of acoustic equation using radial point interpolation method with discontinuous galerkin time integration. Civil Engineering and Architecture, Vol. 8, No. 5, 2020, pp. 973–983.10.13189/cea.2020.080524 Search in Google Scholar

[15] CAO, L. - FU, Q. - SI, Y. - DING, B. - YU, J.: Porous materials for sound absorption. Composites Communications, Vol. 10, April 2018, pp. 25–35.10.1016/j.coco.2018.05.001 Search in Google Scholar

[16] XINZHAO, X. - GUOMING, L. - DONGYAN, L. - GUOXIN, S. - RUI, Y.: Electrically conductive graphene-coated polyurethane foam and its epoxy composites. Composites Communications, Vol. 7, November 2017, pp. 1–6.10.1016/j.coco.2017.11.003 Search in Google Scholar

[17] CHEN, S. - JIANG, Y. - CHEN, J. - WANG, D.: The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Advances in Materials Science and Engineering, Vol. 2015, 2015.10.1155/2015/317561 Search in Google Scholar

[18] KIM, H. S. - MA, P. S. - KIM, B. K. - KIM, S. R. - LEE, S. H.: Near-field effects on the sound transmission and absorption of elastic micro-perforated plates in impedance tubes. Journal of Sound and Vibration, Vol. 499, 2021, p. 116001.10.1016/j.jsv.2021.116001 Search in Google Scholar

[19] PENG, F.: Sound absorption of a porous material with a perforated facing at high sound pressure levels. Journal of Sound and Vibration, Vol. 425, 2018, pp. 1–20.10.1016/j.jsv.2018.03.028 Search in Google Scholar

[20] LIU, Y. - CHEN, K. - ZHANG, Y. - MA, X. - WANG, L.: Low-Frequency and Large-Scale Hybrid Sound Absorption Using Active Force Control. Acoustics Australia, Vol. 49, No. 1, 2021, pp. 93–103.10.1007/s40857-020-00207-0 Search in Google Scholar

[21] ARENAS, J. P. - UGARTE, F.: A note on a circular panel sound absorber with an elastic boundary condition. Applied Acoustics, Vol. 114, 2016, pp. 10–17.10.1016/j.apacoust.2016.07.002 Search in Google Scholar

[22] FAN, C. - TIAN, Y. - WANG, Z. Q. - NIE, J. K. - WANG, G. K. - LIU, X. S.: Structural parameter effect of porous material on sound absorption performance of double-resonance material. IOP Conference Series: Materials Science and Engineering, Vol. 213, No. 1, 2017. Search in Google Scholar

[23] KIM, H. S. - MA, P. S. - KIM, S. R. - LEE, S. H. - SEO, Y. H.: A model for the sound absorption coefficient of multi-layered elastic micro-perforated plates. Journal of Sound and Vibration, Vol. 430, 2018, pp. 75–92.10.1016/j.jsv.2018.05.036 Search in Google Scholar

[24] SAKAGAMI, K. - FUKUTANI, Y. - YAIRI, M. - MORIMOTO, M.: Sound absorption characteristics of a double-leaf structure with an MPP and a permeable membrane. Applied Acoustics, Vol. 76, 2014, pp. 28–34.10.1016/j.apacoust.2013.07.025 Search in Google Scholar

[25] YUVARAJ, L. - JEYANTHI, S.: Acoustic performance of countersunk micro-perforated panel in multilayer porous material. Building Acoustics, Vol. 27, No. 1, 2020, pp. 3–20.10.1177/1351010X19886588 Search in Google Scholar

[26] CHOE, H. - LEE, J. H. - KIM, J. H.: Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Composites Science and Technology, Vol. 194, April 2020, p. 108153.10.1016/j.compscitech.2020.108153 Search in Google Scholar

[27] GAO, N. - TANG, L. - DENG, J. - LU, K. - HOU, H. - CHEN, K.: Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge. Applied Acoustics, Vol. 175, 2021, p. 107845.10.1016/j.apacoust.2020.107845 Search in Google Scholar

[28] BAEK, S. H. - KIM, J. H.: Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves. Composites Science and Technology, Vol. 198, 2020, p. 108325.10.1016/j.compscitech.2020.108325 Search in Google Scholar

[29] SHIMIZU, T. - KOIZUMI, S.: Study of the compatibility between sound insulation performance and ventilation performance in gaps by installing nonwoven fabrics. Building and Environment, Vol. 94, No. P1, 2015, pp. 335–343.10.1016/j.buildenv.2015.08.020 Search in Google Scholar

[30] SHAHANI, F. - SOLTANI, P. - ZARREBINI, M.: The analysis of acoustic characteristics and sound absorption coefficient of needle punched nonwoven fabrics. Journal of Engineered Fibers and Fabrics, Vol. 9, No. 2, 2014, pp. 84–92.10.1177/155892501400900210 Search in Google Scholar

[31] BERARDI, U. - IANNACE, G.: Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, Vol. 94, July 2015, pp. 840–852.10.1016/j.buildenv.2015.05.029 Search in Google Scholar

[32] SOLTANI, P. - NOROUZI, M.: Prediction of the sound absorption behavior of nonwoven fabrics: Computational study and experimental validation. Journal of Sound and Vibration, Vol. 485, 2020, p. 115607.10.1016/j.jsv.2020.115607 Search in Google Scholar

[33] SAKTHIVEL, S. - SENTHIL KUMAR, B.: Studies on influence of bonding methods on sound absorption characteristic of polyester/cotton recycled nonwoven fabrics. Applied Acoustics, Vol. 174, 2021, p. 107749.10.1016/j.apacoust.2020.107749 Search in Google Scholar

[34] SETYOWATI, E. - HARDIMAN, G. - GRAFIANA, N. F.: The acoustical performance of water hyacinth based porous-ceramic compared to the biomass fiber composites for architecture application. Civil Engineering and Architecture, Vol. 9, No. 1, 2021, pp. 139–149.10.13189/cea.2021.090112 Search in Google Scholar

[35] ZHANG, J. et al.: Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Composites Communications, Vol. 13, January 2019, pp. 12–17.10.1016/j.coco.2019.02.002 Search in Google Scholar

[36] SANTONI, A. et al.: Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres. Applied Acoustics, Vol. 150, 2019, pp. 279–289.10.1016/j.apacoust.2019.02.022 Search in Google Scholar

[37] KESHARWANI, A. - BEDI, R. - KUMAR BAGHA, A. - BAHL, S.: Experimental study to measure the sound transmission loss of natural fibers at tonal excitations. Materials Today: Proceedings, Vol. 28, 2020, pp. 1554–1559. Search in Google Scholar

[38] YOON, J. - KIM, H. - KOH, T. - PYO, S.: Microstructural characteristics of sound absorbable porous cement-based materials by incorporating natural fibers and aluminum powder. Construction and Building Materials, Vol. 243, 2020, p. 118167.10.1016/j.conbuildmat.2020.118167 Search in Google Scholar

[39] IANNACE, G.: The acoustic characterization of green materials. Building Acoustics, Vol. 24, No. 2, 2017, pp. 101–113.10.1177/1351010X17704624 Search in Google Scholar

[40] YAN, N. et al.: Preparation of pore-controllable zirconium carbide ceramics with tunable mechanical strength, thermal conductivity and sound absorption coefficient. Ceramics International, Vol. 46, No. 11, 2020, pp. 19609–19616.10.1016/j.ceramint.2020.05.023 Search in Google Scholar

[41] FENG, Y. et al.: Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. Journal of Colloid and Interface Science, Vol. 593, 2021, pp. 59–66.10.1016/j.jcis.2021.03.013 Search in Google Scholar

[42] BOZKURT, T. S. - YILMAZ DEMIRKALE, S.: Investigation and development of sound absorption of plasters prepared with pumice aggregate and natural hydraulic lime binder. Applied Acoustics, Vol. 170, 2020, p. 107521.10.1016/j.apacoust.2020.107521 Search in Google Scholar

[43] YAP, Z. S. - KHALID, N. H. A. - HARON, Z. - MOHAMED, A. - TAHIR, M.: Waste Mineral Wool and Its Opportunities - A Review Zhen. Materials, Vol. 14, 2021, no. 5777.10.3390/ma14195777 Search in Google Scholar

[44] YANG, T. - XIONG, X. - MISHRA, R. - NOVÁK, J. - MILITKÝ, J.: Acoustic evaluation of Struto nonwovens and their relationship with thermal properties. Textile Research Journal, Vol. 88, No. 4, 2018, pp. 426–437.10.1177/0040517516681958 Search in Google Scholar

[45] CHEN, J. - ZHANG, X.: Prediction of thermal conductivity and phonon spectral of silicon material with pores for semiconductor device. Physica B: Condensed Matter, Vol. 614, April 2020, p. 413034.10.1016/j.physb.2021.413034 Search in Google Scholar

[46] THAI, Q. B. et al.: Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. Journal of Environmental Chemical Engineering, Vol. 8, No. 5, 2020, p. 104279.10.1016/j.jece.2020.104279 Search in Google Scholar

[47] ALI, M. et al.: Thermal and acoustic characteristics of novel thermal insulating materials made of Eucalyptus Globulus leaves and wheat straw fibers. Journal of Building Engineering, Vol. 32, 2020, p. 101452.10.1016/j.jobe.2020.101452 Search in Google Scholar

[48] JEONG, C. H.: Flow resistivity estimation from practical absorption coefficients of fibrous absorbers. Applied Acoustics, Vol. 158, 2020, p. 107014.10.1016/j.apacoust.2019.107014 Search in Google Scholar

[49] TABAN, E. et al.: Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment, Vol. 161, April 2019, p. 106274.10.1016/j.buildenv.2019.106274 Search in Google Scholar

[50] MU, L. - ZULKEFLI, Z. A. - JALIL, N. A. A. - PUTRA, A. - OTHMAN, M. N. - AHMAD, R. M. K. R.: Experimental investigation of an acoustic metamaterial barrier design composed of a square prism within a hexagonal recess. ASEAN Engineering Journal, Vol. 11, No. 3, 2021, pp. 57–70.10.11113/aej.v11.16872 Search in Google Scholar

[51] MAHMUD, M. Z. H. et al.: Characterisation of microstructural and sound absorption properties of porous asphalt subjected to progressive clogging. Construction and Building Materials, Vol. 283, 2021, p. 122654.10.1016/j.conbuildmat.2021.122654 Search in Google Scholar

[52] OTHMANI, C. et al.: Acoustic characterization of a porous absorber based on recycled sugarcane wastes. Applied Acoustics, Vol. 120, 2017, pp. 90–97.10.1016/j.apacoust.2017.01.010 Search in Google Scholar

[53] CHENG, Y. - XU, Z. - CHEN, S. - JI, Y. - ZHANG, D. - LIANG, J.: The influence of closed pore ratio on sound absorption of plant-based polyurethane foam using control unit model. Applied Acoustics, Vol. 180, 2021, p. 108083.10.1016/j.apacoust.2021.108083 Search in Google Scholar

[54] YUAN, Z. X. - DONG-XIONG: Acoustic Properties of Multilayered Structures. Acoustics Australia, Vol. 48, No. 3, 2020, pp. 395–405.10.1007/s40857-020-00196-0 Search in Google Scholar

[55] JI, Y. - CHEN, S. - ZHU, W.: The effect of pore numbers in the cell walls of soybean oil polyurethane foam on sound absorption performance. Applied Acoustics, Vol. 157, 2020, p. 107010.10.1016/j.apacoust.2019.107010 Search in Google Scholar

[56] SHEN, L. - ZHANG, H. - LEI, Y. - CHEN, Y. - LIANG, M. - ZOU, H.: Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance. Carbohydrate Polymers, Vol. 255, July 2020, p. 117405.10.1016/j.carbpol.2020.117405 Search in Google Scholar

[57] JEON, J. H. - YANG, S. S. - KANG, Y. J.: Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Applied Acoustics, Vol. 169, 2020, p. 107476.10.1016/j.apacoust.2020.107476 Search in Google Scholar

[58] XIONG, X. - LIU, X. - WU, L. - PANG, J. - ZHANG, H.: Study on the influence of boundary conditions on the airflow resistivity measurement of porous material. Applied Acoustics, Vol. 161, 2020, p. 107181.10.1016/j.apacoust.2019.107181 Search in Google Scholar

[59] RYONG KOH, S. - ZHOU, B. - MEINKE, M. - GAUGER, N. - SCHRÖDER, W.: Numerical analysis of the impact of variable porosity on trailing-edge noise. Computers and Fluids, Vol. 167, 2018, pp. 66–81.10.1016/j.compfluid.2018.02.015 Search in Google Scholar

[60] RUBIO CARPIO, A. - AVALLONE, F. - RAGNI, D.: On the role of the flow permeability of metal foams on trailing edge noise reduction. 2018 AIAA/CEAS Aeroacoustics Conference, 2018. Search in Google Scholar

[61] CHAITANYA, P. - JOSEPH, P. - CHONG, T. P. - PRIDDIN, M. - AYTON, L.: On the noise reduction mechanisms of porous aerofoil leading edges. Journal of Sound and Vibration, Vol. 485, 2020, p. 115574.10.1016/j.jsv.2020.115574 Search in Google Scholar

[62] CHONG, T. P. - DUBOIS, E.: Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction. The Journal of the Acoustical Society of America, Vol. 140, No. 2, 2016, pp. 1361–1373.10.1121/1.4961362 Search in Google Scholar

[63] LIU, M. - HUANG, X. - XUE, G.: Effects of double layer porous asphalt pavement of urban streets on noise reduction. International Journal of Sustainable Built Environment, Vol. 5, No. 1, 2016, pp. 183–196.10.1016/j.ijsbe.2016.02.001 Search in Google Scholar

[64] RUBIO CARPIO, A. - MERINO MARTÍNEZ, R. - AVALLONE, F. - RAGNI, D. - SNELLEN, M. -VAN DER ZWAAG, S.: Experimental characterization of the turbulent boundary layer over a porous trailing edge for noise abatement. Journal of Sound and Vibration, Vol. 443, 2019, pp. 537–558.10.1016/j.jsv.2018.12.010 Search in Google Scholar

[65] DONG, B. - XIE, D. - HE, F. - HUANG, L.: Noise attenuation and performance study of a small-sized contra-rotating fan with microperforated casing treatments. Mechanical Systems and Signal Processing, Vol. 147, No. 6, 2021, p. 107086.10.1016/j.ymssp.2020.107086 Search in Google Scholar

[66] XI, Q. - CHOY, Y. S. - CHENG, L. - TANG, S. K.: Noise control of dipole source by using micro-perforated panel housing. Journal of Sound and Vibration, Vol. 362, 2016, pp. 39–55.10.1016/j.jsv.2015.09.047 Search in Google Scholar

[67] BRAVO, T. - MAURY, C. - PINHÈDE, C.: Absorption and transmission of boundary layer noise through flexible multi-layer micro-perforated structures. Journal of Sound and Vibration, Vol. 395, 2017, pp. 201–223.10.1016/j.jsv.2017.02.018 Search in Google Scholar

[68] BRAVO, T. - MAURY, C.: Sound attenuation and absorption by micro-perforated panels backed by anisotropic fibrous materials: Theoretical and experimental study. Journal of Sound and Vibration, Vol. 425, 2018, pp. 189–207.10.1016/j.jsv.2018.04.006 Search in Google Scholar

[69] SUNG, G. - KIM, J. W. - KIM, J. H.: Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. Journal of Industrial and Engineering Chemistry, Vol. 44, 2016, pp. 99–104.10.1016/j.jiec.2016.08.014 Search in Google Scholar

[70] RAHMAWATI, R. D. - MASYKURI, M. - RETNO DEWI, Y. L.: Performance of biofoam polyurethane - urea / rice straw waste (Oryza sativa) as a noise reducer. AIP Conference Proceedings, Vol. 2296, November 2020.10.1063/5.0030733 Search in Google Scholar

[71] HUANG, K. - DAI, L. - FAN, Y.: Characterization of noise reduction capabilities of porous materials under various vacuum conditions. Applied Acoustics, Vol. 161, 2020, p. 107155.10.1016/j.apacoust.2019.107155 Search in Google Scholar

[72] PARAMESHWARA, S. - PRADEEP, N. B. - VENKATESHA, B. K. - PRASHANTH, K. P.: Vibro-acoustic modelling and analysis of segmented aluminum fuselage of transport aircraft with blankets. Materials Today: Proceedings, 2021. Search in Google Scholar

[73] A. ÖZKAL - F. CENGIZ ÇALLIOĞLU - Ç. AKDUMAN: Development of a new nanofibrous composite material from recycled nonwovens to improve sound absorption ability. Journal of the Textile Institute, Vol. 111, No. 2, 2020, pp. 189–201.10.1080/00405000.2019.1631075 Search in Google Scholar

[74] ÖZKAL, A. - CENGIZ ÇALLIOĞLU, F.: Effect of nanofiber spinning duration on the sound absorption capacity of nonwovens produced from recycled polyethylene terephthalate fibers. Applied Acoustics, Vol. 169, 2020, p. 107468.10.1016/j.apacoust.2020.107468 Search in Google Scholar

[75] HAJIMOHAMMADI, M. - SOLTANI, P. - SEMNANI, D. - TABAN, E. - FASHANDI, H.: Nonwoven fabric coated with core-shell and hollow nanofiber membranes for efficient sound absorption in buildings. Building and Environment, Vol. 213, No. November 2021, p. 108887.10.1016/j.buildenv.2022.108887 Search in Google Scholar

[76] FERNEA, R. - MANEA, D. L. - PLESA, L. - IERNUTAN, R. - DUMITRAN, M.: Acoustic and thermal properties of hemp-cement building materials. Procedia Manufacturing, Vol. 32, 2019, pp. 208–215.10.1016/j.promfg.2019.02.204 Search in Google Scholar

[77] KINNANE, O. - REILLY, A. - GRIMES, J. - PAVIA, S. - WALKER, R.: Acoustic absorption of hemp-lime construction. Construction and Building Materials, Vol. 122, 2016, pp. 674–682.10.1016/j.conbuildmat.2016.06.106 Search in Google Scholar

[78] MAWARDI, I. - APRILIA, S. - FAISAL, M. - IKRAMULLAH - RIZAL, S.: An investigation of thermal conductivity and sound absorption from binderless panels made of oil palm wood as bio-insulation materials. Results in Engineering, Vol. 13, No. November 2021, p. 100319.10.1016/j.rineng.2021.100319 Search in Google Scholar