Accès libre

A Generating - Absorbing Boundary Condition Applied to Wave - Current Interactions Using the Method of Fundamental Solutions

À propos de cet article

Citez

[1] KIM, S. Y. – KIM, K. M. – PARK, J. C. et al.: Numerical Simulation of Wave and Current Interaction with a Fixed Offshore Substructure. International Journal of Naval Architecture and Ocean Engineering, Vol. 8, Iss. 2, 2016, pp. 188–197.10.1016/j.ijnaoe.2016.02.002 Search in Google Scholar

[2] ERRIFAIY, M. – NAASSE, S – CHAHINE, C.: Analytical Determination of the Reflection Coefficient by the Evanescent Modes Model during the Wave–Current–Horizontal Plate Interaction. Comptes Rendus Mécanique, Vol. 344, Iss. 7, 2016, pp. 479–486.10.1016/j.crme.2016.03.004 Search in Google Scholar

[3] NAASSE, S. – ERRIFAIY, M. – CHAHINE, C.: Analytical Study of the Effect of the Geometrical Parameters during the Interaction of Regular Wave-Horizontal Plate-Current. Acta Oceanologica Sinica, Vol. 38, Iss. 5, 2019, pp. 10–20.10.1007/s13131-019-1346-1 Search in Google Scholar

[4] CHEN, L. – NING, D. – TENG. B. – ZHAO, M.: Numerical and Experimental Investigation of Nonlinear Wave-Current Propagation over a Submerged Breakwater. Journal of Engineering Mechanics, Vol. 143, Iss. 9, 2017.10.1061/(ASCE)EM.1943-7889.0001271 Search in Google Scholar

[5] ZHANG, J. S. – ZHANG, Y. – JENG, D. S. et al.: Numerical Simulation of Wave–Current Interaction Using a RANS Solver. Ocean Engineering, Vol. 75, 2014, pp. 157–164.10.1016/j.oceaneng.2013.10.014 Search in Google Scholar

[6] ZHANG, T. – REN, Y. F. – YANG, Z. Q et al.: Application of Generalized Finite Difference Method to Propagation of Nonlinear Water Waves in Numerical Wave Flume. Ocean Engineering, Vol. 123, 2016, pp. 278–290.10.1016/j.oceaneng.2016.07.038 Search in Google Scholar

[7] GHOLAMIPOOR, M. – GHIASI, M.: A Meshless Numerical Wave Tank for Simulation of Fully Nonlinear Wave–Wave and Wave–Current Interactions. Journal of Engineering Mathematics, Vol. 119, Iss.1, 2019, pp. 115–133.10.1007/s10665-019-10021-x Search in Google Scholar

[8] LIN, H. X. – NING, D. Z. – ZOU, Q. P. et al.: Current Effects on Nonlinear Wave Scattering by a Submerged Plate. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 140, Iss. 5, 2014, pp. 1–12.10.1061/(ASCE)WW.1943-5460.0000256 Search in Google Scholar

[9] FAN, C. M. – CHU, C. N. – ŠARLER, B et al.: Numerical Solutions of Waves-Current Interactions by Generalized Finite Difference Method. Engineering Analysis with Boundary Elements, Vol. 100, 2019, pp. 150–163.10.1016/j.enganabound.2018.01.010 Search in Google Scholar

[10] HE, M. – GAO, X. – XU, W.: Numerical Simulation of Wave-Current Interaction using the SPH Method. Journal of Hydrodynamics, Vol. 30, Iss. 3, 2018, pp. 535–538.10.1007/s42241-018-0042-5 Search in Google Scholar

[11] NI. X. – FENG, W. – HUANG, S. et al.: A SPH Numerical Wave Flume with Non-Reflective Open Boundary Conditions. Ocean Engineering, Vol. 163, 2018, pp. 483–501.10.1016/j.oceaneng.2018.06.034 Search in Google Scholar

[12] NI, X. – FENG, W. – HUANG, S. et al.: An SPH Wave-Current Flume using Open Boundary Conditions. Journal of Hydrodynamics, Vol. 32, Iss. 3, 2019, pp. 536–547.10.1007/s42241-019-0030-4 Search in Google Scholar

[13] RØED, L. P. – COOPER, C. K.: Open Boundary Conditions in Numerical Ocean Models. Advanced Physical Oceanographic Numerical Modelling, Vol. 186, 1986, pp. 411–436.10.1007/978-94-017-0627-8_23 Search in Google Scholar

[14] RØED, L.P. – COOPER, C. K.: A Study of Various Boundary Conditions for Wind-Forced Barotropic Numerical Ocean Models. Elsevier Oceanography Series, Vol. 45, 1987, pp. 305–335.10.1016/S0422-9894(08)70454-9 Search in Google Scholar

[15] ORLANSKY, I.: A Simple Boundary Condition for Unbonded Hyperbolic Flows. Journal of Computational Physics, Vol. 21, Iss. 3, 1976, pp. 251–269.10.1016/0021-9991(76)90023-1 Search in Google Scholar

[16] LOUKILI, M. – MORDANE, S.: New Numerical Investigation Using Meshless Methods Applied to the Linear Free Surface Water Waves. Advances in Intelligent Systems and Computing, Vol. 765, 2019, pp. 337–345.10.1007/978-3-319-91192-2_33 Search in Google Scholar

[17] LOUKILI, M. – EL AARABI, L. – MORDANE, S.: Computation of Nonlinear Free-Surface Flows Using the Method of Fundamental Solutions. Advances in Intelligent Systems and Computing, Vol. 763, 2019, pp. 420–430.10.1007/978-3-319-91186-1_44 Search in Google Scholar

[18] LOUKILI, M. – MORDANE, S.: Numerical Analysis of an Absorbing Boundary Condition Applied to the Free Surface Water Waves Using the Method of Fundamental Solutions. 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Bahrain, 2019.10.1109/ICMSAO.2019.8880324 Search in Google Scholar

[19] XIAO, L. F. – YANG, J. M. – PENG, T. et al.: A Free Surface Interpolation Approach for Rapid Simulation of Short Waves in Meshless Numerical Wave Tank Based on the Radial Basis Function. Journal of Computational Physics, Vol. 307, 2016, pp. 203–224.10.1016/j.jcp.2015.12.003 Search in Google Scholar

[20] WU, N. J. – TSAY, T. K. - YOUNG, D. L.: Computation of Nonlinear Free-Surface Flows by a Meshless Numerical Method. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, Iss. 2, 2008, pp. 97–103.10.1061/(ASCE)0733-950X(2008)134:2(97) Search in Google Scholar

[21] HOLTHUIJSEN, L.: Tides and Currents. In Waves in Oceanic and Coastal Waters. Cambridge: Cambridge University Press, 2007, pp. 335–341.10.1017/CBO9780511618536.014 Search in Google Scholar

[22] NIEMIEC, D. – BULKO, R. – MUŽÍK, J.: The Meshfree Localized Petrov-Galerkin Approach in Slope Stability Analysis. Civil and Environmental Engineering, Vol. 15, Iss. 1, 2019, pp. 79–84.10.2478/cee-2019-0011 Search in Google Scholar

[23] LOUKILI, M. – MORDANE, S.: New Contribution to Stokes Equations. Advances and Applications in Fluid Mechanics, Vol. 20, Iss. 2, 2017, pp. 107–116.10.17654/FM020010107 Search in Google Scholar

[24] MUŽÍK, J.: Characteristic-Based Split Meshless Solution for Couette Flow. Civil and Environmental Engineering, Vol. 10, Iss. 1, 2014, pp. 62–68.10.2478/cee-2014-0008 Search in Google Scholar

[25] YOUNG, D. L. – LIN, Y. C. – FAN, C. M. et al.: The Method of Fundamental Solutions for Solving Incompressible Navier–Stokes Problems. Engineering Analysis with Boundary Elements, Vol. 33, Iss. 8–9, 2009, pp. 1031–1044.10.1016/j.enganabound.2009.03.003 Search in Google Scholar

[26] MUŽÍK, J.: Meshless Solution of Incompressible Flow over Backward-Facing Step. Civil and Environmental Engineering, Vol. 12, Iss. 1, 2016, pp. 63–68.10.1515/cee-2016-0009 Search in Google Scholar

[27] GOLBERG, M. A. – CHEN C. S.: The Method of Fundamental Solutions for Potential, Helmholtz and Diffusion problems. Boundary Integral Methods Numerical and Mathematical Aspects. Southampton: Computational Mechanics Publications, 1998, p.74. Search in Google Scholar

[28] LOUKILI, M. – KOTRASOVA, K. – MOUHID, M.: Computerized Decision Aid Applied to Meshless Method for the Use Case: Wave-Structure Interactions. 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 2020, pp. 33–36. Search in Google Scholar

[29] LOUKILI, M. – DUTYKH, D. – KOTRASOVA, K. – NING, D.: Numerical Stability Investigations of the Method of Fundamental Solutions Applied to Wave-Current Interactions Using Generating-Absorbing Boundary Conditions. Symmetry, Vol. 13, Iss. 7, 2021, 1153. Search in Google Scholar