Accès libre

Microwave-Aided Reactions of Aniline Derivatives with Formic Acid: Inquiry-Based Learning Experiments

À propos de cet article

Citez

[1] Carey JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem. 2006;4(12):2337-47. DOI: 10.1039/B602413K.10.1039/b602413k16763676 Search in Google Scholar

[2] Baran PS. Natural product total synthesis: As exciting as ever and here to stay. J Am Chem Soc. 2018;140(14):4751-5. DOI: 10.1021/jacs.8b02266.10.1021/jacs.8b0226629635919 Search in Google Scholar

[3] Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev. 2012;41(15):5185-238. DOI: 10.1039/C2CS35116A.10.1039/c2cs35116a342687122743704 Search in Google Scholar

[4] Truax NJ, Romo D. Bridging the gap between natural product synthesis and drug discovery. Nat Prod Rep. 2020;37(11):1436-53. DOI: 10.1039/D0NP00048E.10.1039/D0NP00048E771879333104139 Search in Google Scholar

[5] Rybińska-Fryca A, Mikolajczyk A, Puzyn T. Structure-activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale. 2020;12(40):20669-76. DOI: 10.1039/D0NR05220E.10.1039/D0NR05220E33048104 Search in Google Scholar

[6] Todd MH. Computer-aided organic synthesis. Chem Soc Rev. 2005;34(3):247-66. DOI: 10.1039/B104620A.10.1039/b104620a15726161 Search in Google Scholar

[7] Chambers SA, DeSousa JM, Huseman ED, Townsend SD. The dark side of total synthesis: strategies and tactics in psychoactive drug production. ACS Chem Neurosci. 2018;9(10):2307-30. DOI: 10.1021/acschemneuro.7b00528.10.1021/acschemneuro.7b00528620572229342356 Search in Google Scholar

[8] Littleson MM, Baker CM, Dalençon AJ, Frye EC, Jamieson C, Kennedy AR, et al. Scalable total synthesis and comprehensive structure-activity relationship studies of the phytotoxin coronatine. Nat Commun. 2018;9(1):1105. DOI: 10.1038/s41467-018-03443-1.10.1038/s41467-018-03443-1585674629549326 Search in Google Scholar

[9] Hanessian S. Structure-based organic synthesis of drug prototypes: A personal odyssey. Chem Med Chem. 2006;1(12):1300-30. DOI: 10.1002/cmdc.200600203.10.1002/cmdc.20060020317091524 Search in Google Scholar

[10] Williams CM, Dallaston MA, Williams CM, Dallaston MA. The future of retrosynthesis and synthetic planning: Algorithmic, humanistic or the interplay? Aust J Chem. 2021;74(5):291-326. DOI: 10.1071/CH20371.10.1071/CH20371 Search in Google Scholar

[11] Li C-J, Trost BM. Green chemistry for chemical synthesis. Proc Nat Acad Sci. 2008;105(36):13197-202. DOI: 10.1073/pnas.0804348105.10.1073/pnas.0804348105253316818768813 Search in Google Scholar

[12] Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sus Chem Eng. 2016;4(11):5866-78. DOI: 10.1021/acssuschemeng.6b01623.10.1021/acssuschemeng.6b01623737721832704457 Search in Google Scholar

[13] Ganesh KN, Zhang D, Miller SJ, Rossen K, Chirik PJ, Kozlowski MC, et al. Green chemistry: A framework for a sustainable future. Org Proc Res Dev. 2021;25(7):1455-9. DOI: 10.1021/acs.oprd.1c00216.10.1021/acs.oprd.1c00216 Search in Google Scholar

[14] Sharma N, Sharma UK, Van der Eycken EV. Microwave-Assisted Organic Synthesis: Overview of Recent Applications [Internet]. In: Green Techniques for Organic Synthesis and Medicinal Chemistry. John Wiley Sons, Ltd; 2018. pp. 441-68. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119288152.ch17.10.1002/9781119288152.ch17 Search in Google Scholar

[15] Horikoshi S, Watanabe T, Narita A, Suzuki Y, Serpone N. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS). Sci Rep. 2018;8(1):5151. DOI: 10.1038/s41598-018-23465-5.10.1038/s41598-018-23465-5598008829581443 Search in Google Scholar

[16] Tanaka K, Toda F. Solvent-free organic synthesis. Chem Rev. 2000;100(3):1025-74. DOI: 10.1021/cr940089p.10.1021/cr940089p11749257 Search in Google Scholar

[17] Wojnarowicz J, Chudoba T, Lojkowski W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials. 2020;10(6):1086. DOI: 10.3390/nano10061086.10.3390/nano10061086735322532486522 Search in Google Scholar

[18] Jordan AM, Wilke AE, Nguyen TL, Capistrant KC, Zarbock KR, Batiste Simms ME, et al. Multistep microwave-assisted synthesis of avobenzone. J Chem Educ. 2022;99(3):1435-40. DOI: 10.1021/acs.jchemed.1c00818.10.1021/acs.jchemed.1c00818 Search in Google Scholar

[19] Havlíček J, Myška K, Tejchman W, Karásková N, Doležal R, Maltsevskaya NV, et al. Microwave synthesis of sulfanilic acid. Chem Didact Ecol Metrol. 2017;22(1-2):93-8. DOI: 10.1515/cdem-2017-0005.10.1515/cdem-2017-0005 Search in Google Scholar

[20] Pedaste M, Mäeots M, Siiman LA, de Jong T, van Riesen SAN, Kamp ET, et al. Phases of inquiry-based learning: Definitions and the inquiry cycle. Edu Res Rev. 2015;14:47-61. DOI: 10.1016/j.edurev.2015.02.003.10.1016/j.edurev.2015.02.003 Search in Google Scholar

[21] Keselman A. Supporting inquiry learning by promoting normative understanding of multivariable causality. J Res Sci Teach. 2003;40(9):898-921. DOI: 10.1002/tea.10115.10.1002/tea.10115 Search in Google Scholar

[22] Mlejnek T, Myška K, Kolář K. Microwave assisted solvent free synthesis of benzamides as school experiment - effect of substituent in benzoic acid. In: Teaching of Science Subjects in Higher and Highest Education. Kraków: PU; 2016. pp. 143-51. ISBN: 9788380840386. Search in Google Scholar

[23] McMurry JE. Organická chemie (Organic Chemistry). Brno-Praha: VUTIUM-VŠCHT; 2007. ISBN: 9788021432918. Search in Google Scholar

[24] Aronoff DM. Aspirin and Reye’s syndrome. Drug-Safety. 2002;25(10):751. DOI: 10.2165/00002018-200225100-00007.10.2165/00002018-200225100-0000712167070 Search in Google Scholar

[25] Stuart DR, Bertrand-Laperle M, Burgess KMN, Fagnou K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. J Am Chem Soc. 2008;130(49):16474-5. DOI: 10.1021/ja806955s.10.1021/ja806955s19554684 Search in Google Scholar

[26] Zhou X-Y, Chen X, Yang D. Iodine and Brønsted acid catalyzed C-C bond cleavage of 1,3-diketones for the acylation of amines. Syn Comm. 2020;50(2):177-84. DOI: 10.1080/00397911.2019.1691736.10.1080/00397911.2019.1691736 Search in Google Scholar

[27] Fieser L, Williamson K. Organic Experiments. Lexington: D.C. Heath and Company; 1987. ISBN: 0669243442. Search in Google Scholar

[28] Večeřa M, Panchartek J. Laboratorní Příručka Organické Chemie (Laboratory Handbook of Organic Chemistry). Praha: SNTL; 1987. ISBN: 0461587. Search in Google Scholar

[29] Vogel AI. Practical Organic Chemistry. London: Longman; 1957. ISBN: 0-582-44245-1. Search in Google Scholar

[30] Reeve W, Lowe VC. Preparation of acetanilide from nitrobenzene. J Chem Educ. 1979;56(7):488. DOI: 10.1021/ed056p488.10.1021/ed056p488 Search in Google Scholar

[31] Venables KM. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides. Occup Env Med. 1989;46(4):222-32. DOI: 10.1136/oem.46.4.222.10.1136/oem.46.4.22210097612653411 Search in Google Scholar

[32] Varma RS. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem. 1999;1(1):43-55. DOI: 10.1039/A808223E.10.1039/a808223e Search in Google Scholar

[33] Cresswell SL, Haswell SJ. Microwave ovens - out of the kitchen. J Chem Educ. 2001;78(7):900. DOI: 10.1021/ed078p900.10.1021/ed078p900 Search in Google Scholar

[34] Kappe CO, Murphree SS. Microwave-assisted carbonyl chemistry for the undergraduate laboratory. J Chem Educ. 2009;86(2):227. DOI: 10.1021/ed086p227.10.1021/ed086p227 Search in Google Scholar

[35] Baar MR, Falcone D, Gordon C. Microwave-enhanced organic syntheses for the undergraduate laboratory: Diels-Alder cycloaddition, Wittig reaction, and Williamson ether synthesis. J Chem Educ. 2010;87(1):84-6. DOI: 10.1021/ed800001x.10.1021/ed800001x Search in Google Scholar

[36] Shell TA, Shell JR, Poole KA, Guetzloff TF. Microwave-assisted synthesis of n-phenylsuccinimide. J Chem Educ. 2011;88(10):1439-41. DOI: 10.1021/ed100983x.10.1021/ed100983x322404222125340 Search in Google Scholar

[37] Damkaci F, Dallas M, Wagner M. A microwave-assisted Friedel-Crafts acylation of toluene with anhydrides. J Chem Educ. 2013;90(3):390-2. DOI: 10.1021/ed200479n.10.1021/ed200479n Search in Google Scholar

[38] Baar MR, Gammerdinger W, Leap J, Morales E, Shikora J, Weber MH. Pedagogical comparison of five reactions performed under microwave heating in multi-mode versus mono-mode ovens: Diels-Alder cycloaddition, Wittig salt formation, E2 dehydrohalogenation to form an alkyne, Williamson ether synthesis, and Fischer esterification. J Chem Educ. 2014;91(10):1720-4. DOI: 10.1021/ed4005485.10.1021/ed4005485 Search in Google Scholar

[39] Reilly MK, King RP, Wagner AJ, King SM. Microwave-assisted esterification: A discovery-based microscale laboratory experiment. J Chem Educ. 2014;91(10):1706-9. DOI: 10.1021/ed400721p.10.1021/ed400721p Search in Google Scholar

[40] Pilcher SC, Coats J. Preparing 4-ethoxyphenylurea using microwave irradiation: Introducing students to the importance of artificial sweeteners and microwave-assisted organic synthesis (MAOS). J Chem Educ. 2017;94(2):260-3. DOI: 10.1021/acs.jchemed.6b00279.10.1021/acs.jchemed.6b00279 Search in Google Scholar

[41] Hájek M. Mikrovlny v akci (Microwaves in practice) [Internet]. Praha: Science Academy of Czech Republic; 2008. Available from: http://golem.fjfi.cvut.cz/wiki/Diagnostics/Basic/ElectronDensity/instructions/Mikrovlny%20v%20akci.pdf (accessed 1.06.2022). Search in Google Scholar

[42] Loupy A. Microwaves in Organic Synthesis. 2. Weinheim: Wiley-WCH; 2006. ISBN: 9783527314522. DOI: 10.1002/9783527619559.10.1002/9783527619559 Search in Google Scholar

[43] Ybáñez N, Cervera ML, Montoro R, de la Guardia M. Comparison of dry mineralization and microwave-oven digestion for the determination of arsenic in mussel products by platform in furnace Zeeman-effect atomic absorption spectrometry. J Anal At Spectrom. 1991;6(5):379-84. DOI: 10.1039/JA9910600379.10.1039/JA9910600379 Search in Google Scholar

[44] Gedye RN, Smith FE, Westaway KC. The rapid synthesis of organic compounds in microwave ovens. Can J Chem. 1988;66(1):17-26. DOI: 10.1139/v88-003.10.1139/v88-003 Search in Google Scholar

[45] Adams JP. Imines, enamines and oximes. J Chem Soc. Perkin Trans. 1. 2000;(2):125-39. DOI: 10.1039/A808142E.10.1039/a808142e Search in Google Scholar

[46] Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis - a review. Tetrahedron. 2001;57(45):9225-83. DOI: 10.1016/S0040-4020(01)00906-1.10.1016/S0040-4020(01)00906-1 Search in Google Scholar

[47] Kaur N. Microwave-assisted synthesis of five-membered O-heterocycles. Syn Com. 2014;44(24):3483-508. DOI: 10.1080/00397911.2013.800213.10.1080/00397911.2013.800213 Search in Google Scholar

[48] Bogdal D, Loupy A. Application of microwave irradiation to phase-transfer catalyzed reactions. Org Process Res Dev. 2008;12(4):710-22. DOI: 10.1021/op8000542.10.1021/op8000542 Search in Google Scholar

[49] Collins Jr MJ. Future trends in microwave synthesis. Fut Med Chem. 2010;2(2):151-5. DOI: 10.4155/fmc.09.133.10.4155/fmc.09.13321426181 Search in Google Scholar

[50] Šauliová J. Využití mikrovlnného ohřevu v laboratorních cvičeních studentů jako demonstrační pokusy (Use of microwave heating in students’ laboratory exercises as demonstration experiments). Chem Listy. 2002;96(9):761-5. Available from: http://www.chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/2303/2303 (accessed 1.06.2022). Search in Google Scholar

[51] Ranu BC, Adak L, Ghosh T. Learning Green Chemistry and its principles from nature’s process and development of green procedures mimicking nature. Chem Teacher Int. 2021. DOI: 10.1515/cti-2021-0023.10.1515/cti-2021-0023 Search in Google Scholar

[52] Galema SA. Microwave chemistry. Chem Soc Rev. 1997;26(3):233-8. DOI: 10.1039/CS9972600233.10.1039/cs9972600233 Search in Google Scholar

[53] Slocombe DR, Porch A. Microwaves in chemistry. IEEE J Micro. 2021;1(1):32-42. DOI: 10.1109/JMW.2020.3029337.10.1109/JMW.2020.3029337 Search in Google Scholar

[54] Jie X, Wang J, Gonzalez-Cortes S, Yao B, Li W, Gao Y, et al. Catalytic activity of various carbons during the microwave-initiated deep dehydrogenation of hexadecane. JACS Au. 2021;1(11):2021-32. DOI: 10.1021/jacsau.1c00326.10.1021/jacsau.1c00326861166034841415 Search in Google Scholar

[55] Dhanush PC, Saranya PV, Anilkumar G. Microwave assisted C-H activation reaction: An overview. Tetrahedron. 2022;105:132614. DOI: 10.1016/j.tet.2021.132614.10.1016/j.tet.2021.132614 Search in Google Scholar

[56] Olmsted JA. Synthesis of aspirin: A general chemistry experiment. J Chem Educ. 1998;75(10):1261. DOI: 10.1021/ed075p1261.10.1021/ed075p1261 Search in Google Scholar

[57] Čermák J, Barešová A, Dostál H, Myška K, Kolář K. Syntéza amidů v přítomnosti mikrovln (Synthesis of amides in the presence of microwaves). In: Súčasnosť a perspektívy didaktiky chémie II (The present and perspectives of didactics of chemistry II). Bánská Bystrica: FPV UMB; 2009. pp. 143-5. ISBN: 9788080837518. Search in Google Scholar

[58] Zemanová K, Myška K, Kolář K. Organická syntéza a Zelená chemie (Organic synthesis and green chemistry). Biologie-Chemie-Zeměpis. 2013;22(3):136-8. Available from: https://bichez.pedf.cuni.cz/archive/2013/c3.pdf (accessed 1.06.2022). Search in Google Scholar

[59] Perreux L, Loupy A, Volatron F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron. 2002;58(11):2155-62. DOI: 10.1016/S0040-4020(02)00085-6.10.1016/S0040-4020(02)00085-6 Search in Google Scholar

[60] Mullassery MD, Fernandez NB, Surya R, Thomas D. Microwave-assisted green synthesis of acrylamide cyclodextrin-grafted silylated bentonite for the controlled delivery of tetracycline hydrochloride. Sust Chem Pharm. 2018;10:103-11. DOI: 10.1016/j.scp.2018.10.006.10.1016/j.scp.2018.10.006 Search in Google Scholar

[61] Gerack CJ, McElwee-White L. Formylation of amines. Molecules. 2014;19(6):7689-713. DOI: 10.3390/molecules19067689.10.3390/molecules19067689627099924918541 Search in Google Scholar

[62] Bangar B, Kinkar S, Chobe S, Mandanad G, Yemul O, Dawane B. Clean and green approach for n-formylation of amines using formic acid under neat reaction condition. Arch App Sci Res. 2011;3(3):246-51. Available from: https://www.scholarsresearchlibrary.com/abstract/clean-and-green-approach-for-nformylation-of-amines-using-formic-acid-under-neat-reaction-condition-9842.html (accessed 1.06.2022). Search in Google Scholar

[63] Perrin DD, Dempsey B, Serjeant EP. pKa Prediction for Organic Acids and Bases. London: Chapman Hall; 1981. ISBN: 9780412221903.10.1007/978-94-009-5883-8 Search in Google Scholar

[64] Dawson RMC, Elliot DC, Elliot WH, Jones KM. Data for Biochemical Research. Oxford: Oxford Science Publications, 1986. DOI: 10.1016/0307-4412(87)90110-5.10.1016/0307-4412(87)90110-5 Search in Google Scholar

[65] Rusek M, Chroustova K, Bilek M, Skrehot P, Hon Z. Conditions for experimental activities at elementary and high schools from chemistry teachers’ point of view. Chem Didact Ecol Metrol. 2020;25(1-2):93-100. DOI: 10.2478/cdem-2020-0006.10.2478/cdem-2020-0006 Search in Google Scholar

eISSN:
2084-4506
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Chemistry, other