Accès libre

Analysis and application of a lower envelope method for sharp-interface multiphase problems

  
17 janv. 2025
À propos de cet article

Citez
Télécharger la couverture

Albuquerque, Y. F., Laurain, A. and Sturm, K. (2020) A shape optimization approach for electrical impedance tomography with point measurements. Inverse Problems, 36(9): 095006, 27.Search in Google Scholar

Alessandrini, G., de Hoop, M. V., Gaburro, R. and Sincich, E. (2018) EIT in a layered anisotropic medium. Inverse Probl. Imaging, 12(3): 667–676.Search in Google Scholar

Allaire, G., Dapogny, C., Delgado, G. and Michailidis, G. (2014) Multi-phase structural optimization via a level set method. ESAIM Control Optim. Calc. Var., 20(2): 576–611.Search in Google Scholar

Allaire, G., Dapogny, C., and Jouve, F. C. (2021) Shape and topology optimization. In: Geometric Partial Differential Equations. Part II. Handb. Numer. Anal., 1–132. Elsevier/North-Holland, Amsterdam.Search in Google Scholar

Azegami, H. (2020) Shape Optimization Problems. Springer Optimization and Its Applications 164. Springer, Singapore.Search in Google Scholar

Barrett, J. W., Garcke, H., and Nürnberg, R. (2008) On sharp interface limits of Allen-Cahn/Cahn-Hilliard variational inequalities. Discrete Contin. Dyn. Syst. Ser. S, .(1): 1–14.Search in Google Scholar

Bera, T. K. (2018) Applications of electrical impedance tomography (EIT): A short review. IOP Conference Series: Materials Science and Engineering, 331: 012004.Search in Google Scholar

Beretta, E., Francini, E. and Vessella, S. (2017) Differentiability of the Dirichlet to Neumann map under movements of polygonal inclusions with an application to shape optimization. SIAM J. Math. Anal., 49(2): 756–776.Search in Google Scholar

Beretta, E., Micheletti, S., Perotto, S. and Santacesaria, M. (2018) Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT. J. Comput. Phys., 353: 264–280.Search in Google Scholar

Birgin, E. G., Laurain, A. and Menezes, T. C. (2023) Sensitivity analysis and tailored design of minimization diagrams. Mathematics of Computation, 92(344): 2715–2768.Search in Google Scholar

Borcea, L. (2002) Electrical impedance tomography. Inverse Problems, 18(6): R99–R136.Search in Google Scholar

Bronsard, L., Garcke, H. and Stoth, B. (1998) A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem. Proc. Roy. Soc. Edinburgh Sect. A, 128(3): 481–506.Search in Google Scholar

Bronsard, L. and Wetton, B. T. R. (1995) A numerical method for tracking curve networks moving with curvature motion. J. Comput. Phys., 120(1): 66–87.Search in Google Scholar

Burger, M. (2003) A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound., .(3): 301–329.Search in Google Scholar

Chen, S., Gonella, S., Chen, W. and Liu, W. K. (2010) A level set approach for optimal design of smart energy harvesters. Comput. Methods Appl. Mech. Engrg., 199(37-40): 2532–2543.Search in Google Scholar

de Gournay, F. (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim., 45(1): 343–367.Search in Google Scholar

Delfour, M., Payre, G. and Zolésio, J.-P. (1985) An optimal triangulation for second-order elliptic problems. Comput. Methods Appl. Mech. Engrg., 50(3): 231–261.Search in Google Scholar

Delfour, M. C. and Zolésio, J.-P. (2011) Shapes and Geometries. Advances in Design and Control 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition.Search in Google Scholar

Dumont, S., Goubet, O., Ha-Duong, T. and Villon, P. (2006) Meshfree methods and boundary conditions. Internat. J. Numer. Methods Engrg., 67(7): 989–1011.Search in Google Scholar

Dupire, G., Boufflet, J. P., Dambrine, M. and Villon, P. (2010) On the necessity of Nitsche term. Appl. Numer. Math., 60(9): 888–902.Search in Google Scholar

Edelsbrunner, H. and Seidel, R. (1986) Voronoi diagrams and arrangements. Discrete & Computational Geometry, .(1): 25–44.Search in Google Scholar

Garcke, H., Nestler, B. and Stoth, B. (2000) A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math., 60(1): 295–315.Search in Google Scholar

Gibou, F., Fedkiw, R. and Osher, S. (2018) A review of level-set methods and some recent applications. Journal of Computational Physics, 353: 82–109.Search in Google Scholar

Hintermüller, M. and Laurain, A. (2008) Electrical impedance tomography: from topology to shape. Control Cybernet., 37(4): 913–933.Search in Google Scholar

Hintermüller, M. and Laurain, A. (2009) Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vision, 35(1): 1–22.Search in Google Scholar

Hintermüller, M., Laurain, A. and Novotny, A. A. (2012) Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math., 36(2): 235–265.Search in Google Scholar

Hiptmair, R., Paganini, A. and Sargheini, S. (2014) Comparison of approximate shape gradients. BIT Numerical Mathematics, 55(2): 459–485.Search in Google Scholar

Lamboley, J. and Pierre, M. (2007) Structure of shape derivatives around irregular domains and applications. J. Convex Anal., 14(4): 807–822.Search in Google Scholar

Laurain, A. (2017) Stability analysis of the reconstruction step of the voronoi implicit interface method. SIAM Journal on Numerical Analysis, 55(1): 1–30.Search in Google Scholar

Laurain, A. (2018) A level set-based structural optimization code using FEniCS. Structural and Multidisciplinary Optimization, 58(3): 1311–1334.Search in Google Scholar

Laurain, A. (2020) Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains. Journal de Mathématiques Pures et Appliquées, 134, 328–368.Search in Google Scholar

Laurain, A. and Sturm, K. (2016) Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal., 50(4): 1241–1267.Search in Google Scholar

Li, H. and Tai, X.-C. (2007) Piecewise constant level set method for multi-phase motion. Int. J. Numer. Anal. Model., .(2): 291–305.Search in Google Scholar

Liu, D., Khambampati, A. K., Kim, S. and Kim, K. Y. (2015) Multi-phase flow monitoring with electrical impedance tomography using level set based method. Nuclear Engineering and Design, 289: 108–116.Search in Google Scholar

Liu, D., Zhao, Y., Khambampati, A. K., Sepp¨anen, A. and Du, J. (2018) A parametric level set method for imaging multiphase conductivity using electrical impedance tomography. IEEE Transactions on Computational Imaging, .(4): 552–561.Search in Google Scholar

Logg, A., Mardal, K.-A. and Wells, G. N., eds. (2012) Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, 84, Springer.Search in Google Scholar

Mei, Y. and Wang, X. (2004) A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech. Sin. Engl. Ser., 20(5): 507–518.Search in Google Scholar

Merriman, B., Bence, J. K. and Osher, S. J. (1994) Motion of multiple functions: a level set approach. J. Comput. Phys., 112(2): 334–363.Search in Google Scholar

Noh, W. and Woodward, P. (1976) Slic (simple line interface calculation). In: A. van de Vooren and P. Zandbergen, eds., Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede, Lecture Notes in Physics, 59, 330–340. Springer, Berlin Heidelberg.Search in Google Scholar

Osher, S. and Fedkiw, R. (2003) Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, 153 Springer-Verlag, New York.Search in Google Scholar

Osher, S. and Sethian, J. A. (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1): 12–49.Search in Google Scholar

Qi, L. (2017) Transposes, L-eigenvalues and invariants of third order tensors. arXiv preprint 1704.01327.Search in Google Scholar

Saye R. I. and Sethian, J. A. (2011) The Voronoi implicit interface method for computing multiphase physics. Proc. Natl. Acad. Sci. USA, 108(49): 19498–19503.Search in Google Scholar

Saye, R. I. and Sethian, J. A. (2013) Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science, 340(6133): 720–724.Search in Google Scholar

Sethian, J. A. (1999) Level Set Methods and Fast Marching Methods. Cambridge Monographs on Applied and Computational Mathematics, .. Cambridge University Press, Cambridge, second edition.Search in Google Scholar

Smith, K. A., Solis, F. J. and Chopp, D. L. (2002) A projection method for motion of triple junctions by levels sets. Interfaces Free Bound., .(3): 263–276.Search in Google Scholar

Sokolowski, J. and Zolésio, J.-P. (1992) Introduction to Shape Optimization. Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin.Search in Google Scholar

Sturm, K. (2015) Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SICON, 53(4): 2017–2039.Search in Google Scholar

Sturm, K. (2016) A structure theorem for shape functions defined on sub-manifolds. Interfaces Free Bound., 18(4): 523–543.Search in Google Scholar

Tai, X.-C. and Chan, T. F. (2004) A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Model., .(1): 25–47.Search in Google Scholar

Tavakoli, R. and Mohseni, S. M. (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct. Multidiscip. Optim., 49(4): 621–642.Search in Google Scholar

Tossavainen, O.-P., Vauhkonen, M., Kolehmainen, V. and Youn Kim, K. (2006) Tracking of moving interfaces in sedimentation processes using electrical impedance tomography. Chemical Engineering Science, 61(23): 7717–7729.Search in Google Scholar

Vese, L. A. and Chan, T. F. (2002) A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision, 50(3): 271–293.Search in Google Scholar

Vogiatzis, P., Chen, S., Wang, X., Li, T. and Wang, L. (2017) Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput.-Aided Des., 83: 15–32.Search in Google Scholar

Wang, M. Y. and Wang, X. (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Engrg., 193(6-8): 469–496.Search in Google Scholar

Wang, Y., Luo, Z., Kang, Z. and Zhang, N. (2015) A multi-material level set-based topology and shape optimization method. Comput. Methods Appl. Mech. Engrg., 283: 1570–1586.Search in Google Scholar

Weaire, D. and Hutzler, S. (1999) The Physics of Foams. Clarendon Press.Search in Google Scholar

Zhang, X., Chen, J.-S. and Osher, S. (2008) A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Interaction and Multiscale Mechanics, .(2): 191–209.Search in Google Scholar

Zhao, H.-K., Chan, T., Merriman, B. and Osher, S. (1996) A variational level set approach to multiphase motion. J. Comput. Phys., 127(1): 179–195.Search in Google Scholar

Zolésio, J.-P. (1979) Identification de domaines par déformations. Thése de doctorat d’état, Université de Nice, France.Search in Google Scholar

Zuo, W. and Saitou, K. (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim., 55(2): 477–491.Search in Google Scholar