Accès libre

Billion-Scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering

 et   
18 déc. 2024
À propos de cet article

Citez
Télécharger la couverture

This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Informatique, Informatique