This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Agarap, A. F. Deep Learning Using Rectified Linear Units (RELU). – ArXiv, abs/1803.08375, 2018.Search in Google Scholar
Banerjee, C., T. Mukherjee, E. L. Pasiliao. An Empirical Study on Generalizations of the RELU Activation Function. – In: Proc. of ACM Southeast Conference, 2019.Search in Google Scholar
Gustavo, E. A., P. A. Batista, R. C. Prati, M. C. Monard. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. – SIGKDD Explor., Vol. 200, 2004, No 6, pp. 20-29.Search in Google Scholar
Breiman, L. Stacked Regressions. – Machine Learning, Vol. 24, 2004, pp. 49-64.Search in Google Scholar
Hemlata Dalmia, C. V., S. S. Nikil, S. Kumar. Churning of Bank Customers Using Supervised Learning. – In: Informations on Elektronics and Communications Engeneering, 2020, pp. 681-691.Search in Google Scholar
Renato, A. L. L., T. C. Silva, B. M. Tabak. Propension to Customer Churn in a Financial Institution: A Machine Learning Approach. – Neural Computing & Applications, Vol. 34, 2022, pp. 11751-11768.Search in Google Scholar
Domingos, E., B. Ojeme, O. J. Daramola. Experimental Analysis of Hyperparameters for Deep Learning-Based Churn Prediction in the Banking Sector. – Comput., Vol. 9, 2021, No 34.Search in Google Scholar
Hassonah, M. A., A. Rodan, A.-K. Al-Tamimi, J. Alsakran. Churn Prediction: A Comparative Study Using KNN and Decision Trees. – In: Proc. of 6th HCT Information Technology Trends (ITT’19), 2019, pp. 182-186.Search in Google Scholar
He, Benlan, Y. Shi, Q. Wan, X. Zhao. Prediction of Customer Attrition of Commercial Banks Based on SVM Model. – Procedia Computer Science, Vol. 31, 2014, pp. 423-430.Search in Google Scholar
Bing, Q. H., M. T. Kechadi, B. Buckley, G. Kiernan, E. J. Keogh, T. A. Rashid. A New Feature Set with New Window Techniques for Customer Churn Prediction in Land-Line Telecommunications. – Expert Syst. Appl. Vol. 37, 2010, pp. 3657-3665.Search in Google Scholar
Kaur, I., J. Kaur. Customer Churn Analysis and Prediction in Banking Industry Using Machine Learning. – In: Proc. of 6th International Conference on Parallel, Distributed and Grid Computing (PDGC’20), 2020, pp. 434-437.Search in Google Scholar
Kaushik, H., D. Singh, M. Kaur, H. A. Alshazly, A. Zaguia, H. Hamam. Diabetic Retinopathy Diagnosis from Fundus Images Using Stacked Generalization of Deep Models. – IEEE Access, Vol. 9, 2021, pp. 108276-108292.Search in Google Scholar
Kumar, A. S., D. Chandrakala. An Optimal Churn Prediction Model Using Support Vector Machine with Adaboost. – Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, Vol. 2, 2017, No 1, 225-230.Search in Google Scholar
LeCun, Y., Y. Bengio, G. E. Hinton. Deep Learning. – Nature, Vol. 521, 2015, No 7553, pp. 436-444.Search in Google Scholar
Massaoudi, M., S. S. Refaat, I. Chihi, M. A. Trabelsi, F. S. Oueslati, H. Abu-Rub. A Novel Stacked Generalization Ensemble-Based Hybrid Lgbm-Xgb-Mlp Model for Short-Term Load Forecasting. – Energy, Vol. 214, 2021, No 3.Search in Google Scholar
Müller, A., S. Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. 2016.Search in Google Scholar
Noda, K., Y. Yamaguchi, K. Nakadai, H. G. Okuno, T. Ogata. Audio-Visual Speech Recognition Using Deep Learning. – Applied Intelligence, Vol. 42, 2014, pp. 722-737.Search in Google Scholar
Ravi, V., S. Bapi, R. Churn, C.-F. Tsai, Y.-H. Lu, W. Verbeke, D. Martens, C. Mues, B. Baesens, N. Lu, H. Lin, J. Lu, G. Zhang, B. He, Y. Shi, Q. Wan, X. Zhao, K. W. De Bock, D. Van den Poel, H. Lee, Y. Lee, H. S. Cho. A Survey on Customer Churn Prediction Using Machine Learning Techniques. – International Journal of Computer Applications, Vol. 154, 2016, pp. 13-16.Search in Google Scholar
Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, L. Fei-Fei. Imagenet Large Scale Visual Recognition Challenge. – International Journal of Computer Vision, Vol. 115, 2014, pp. 211-252.Search in Google Scholar
Simonyan, K., A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. – CoRR, abs/1409.1556, 2014.Search in Google Scholar
Simonyan, K., A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. – CoRR, abs/1409.1556, 2015.Search in Google Scholar
Smyth, P., D. H. Wolpert. Stacked Density Estimation. – In: Neural Information Processing Systems Research Gate, 1997.Search in Google Scholar
Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going Deeper with Convolutions. – In: Proc. of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), 2014, pp. 1-9.Search in Google Scholar
Ting, K. M., I. H. Witten. Issues in Stacked Generalization. – J. Artif. Intell. Res., Vol. 10, 1999, pp. 271-289.Search in Google Scholar
Ting, K. M., I. H. Witten. Issues in Stacked Generalization. – ArXiv, abs/1105.5466, 2011.Search in Google Scholar
Tolles, J., W. J. Meurer. Logistic Regression: Relating Patient Characteristics to Outcomes. – JAMA, Vol. 316, 2016, No 5, pp. 533-534.Search in Google Scholar
Hoang, D. T., N. T. Le, V.-H. Nguyen. Customer Churnprediction in the Banking Sector Using Machine Learning-Based Classification Models. – Interdisciplinary Journal of Information, Knowledge, and Management, 2023.Search in Google Scholar
Veningston, K., P. V. Rao, C. T. Selvan, M. Ronalda. Investigation on Customer Churn Prediction Using Machine Learning Techniques. – In: Proc. of International Conference on Data Science and Applications, 2021.Search in Google Scholar
Xu, T., Y. Ma, K. R. Kim. Telecom Churn Prediction System Based on Ensemble Learning Using Feature Grouping. – Applied Science, Vol. 11, 2021.Search in Google Scholar
Zhang, X., J. J. Zhao, Y. LeCun. Character-Level Convolutional Networks for Text Classification. – In: Advances in Neural Information Processing Systems (NIPS 2015), Vol. 28, 2015.Search in Google Scholar
Tu, C. Exploratory Analysis of Bank Customer Attrition. Kaggle, 2020. Exploratory Analysis of Bank Customer Attrition. Accessed July 2024.Search in Google Scholar
Galal, M., S. Rady, M. Aref. Enhancing Customer Churn Prediction in Digital Banking Using Ensemble Modeling. – In: Proc. of 4th IEEE Novel Intelligent and Leading Emerging Sciences Conference (NILES’22), 2022, pp. 21-25.Search in Google Scholar