Accès libre

Multi-Activation Dendritic Neural Network (MA-DNN) Working Example of Dendritic-Based Artificial Neural Network

À propos de cet article

Citez

N. Spruston, G. Stuart, M. Häusser, G. Stuart, N. Spruston, M. Häusser, Eds. Principles of Dendritic Integration. – In: Dendrites. Oxford, Oxford University Press, 2016, pp. 351-398. Search in Google Scholar

Richards, S. E. V., S. D. Van Hooser. Neural Architecture: From Cells to Circuits. – Journal of Neurophysiology, Vol. 120, 2018, No 2, pp. 854-866. Search in Google Scholar

Spruston, N. Pyramidal Neurons: Dendritic Structure and Synaptic Integration. – Nat. Rev. Neurosci., Vol. 9, 2008, pp. 206-221. Search in Google Scholar

Zhang, J. Basic Neural Units of the Brain: Neurons, Synapses and Action Potential. – arXiv preprint arXiv:1906.01703, 2019. Search in Google Scholar

Herculano-Houzel, S. The Remarkable, Yet Not Extraordinary, Human Brain as a Scaled-Up Primate Brain and Its Associated Cost. – Proceedings of the National Academy of Sciences, Vol. 109, 2012, pp. 10661-10668. Search in Google Scholar

Chavlis, S., P. Poirazi. Drawing Inspiration from Biological Dendrites to Empower Artificial Neural Networks. – Current Opinion in Neurobiology, Vol. 70, 2021, pp. 1-10. Search in Google Scholar

McCulloch, W. S., W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. – Bulletin of Mathematical Biophysics, Vol. 5, 1943, pp. 115-133. Search in Google Scholar

Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. – Psychological Review, Vol. 65, 1958, pp. 386-408. Search in Google Scholar

Yanling, Z., D. Bimin, W. Zhanrong. Analysis and Study of Perceptron to Solve XOR Problem. – In: Proc. of 2nd International Workshop on Autonomous Decentralized System, 2002, pp. 168-173. Search in Google Scholar

G. Stuart, N. Spruston, M. Häusser, Eds. Dendrites. Oxford, Oxford University Press, 2016. Search in Google Scholar

Wang, Z., S. Gao, J. Wang, H. Yang, Y. Todo. A Dendritic Neuron Model with Adaptive Synapses Trained by Differential Evolution Algorithm. – Computational Intelligence and Neuroscience, Vol. e2710561, 2020. Search in Google Scholar

Ji, J., S. Gao, J. Cheng, Z. Tang, Y. Todo. An Approximate Logic Neuron Model with a Dendritic Structure. – Neurocomputing, Vol. 173, 2016, pp. 1775-1783. Search in Google Scholar

Marcie, J. T., E. von Hippel. The Situated Nature of Adaptive Learning in Organizations. – Organization Science, Vol. 8, 1997, No 1, pp. 71-83. Search in Google Scholar

Xiao, H., R. Kashif, V. Roland. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. – arXiv preprint arXiv:1708.07747, 2017. Search in Google Scholar

Fisher, R. A. The Use of Multiple Measurements in Taxonomic Problems. – Annals of Human Genetics, Vol. 7, 1936, pp. 179-188. Search in Google Scholar

Wolberg, W. H., W. N. Street, O. L. Mangasarian. Breast Cancer Wisconsin (Diagnostic) Data Set. – UCI Machine Learning Repository, 1992. Search in Google Scholar

Krizhevsky, A., G. Hinton. Learning Multiple Layers of Features from Tiny Images. – University of Toronto, 2009. Search in Google Scholar

Don, S., D. Chung, K. Revathy, E. Choi, D. Min. A New Approach for Mammogram Image Classification Using Fractal Properties. – Cybernetics and Information Technologies, Vol. 12, 2013, No 2, pp. 69-83. Search in Google Scholar

eISSN:
1314-4081
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Computer Sciences, Information Technology