Accès libre

Identification of the Thermoelectric Cooler Using Hybrid Multi-Verse Optimizer and Sine Cosine Algorithm Based Continuous-Time Hammerstein Model

À propos de cet article

Citez

1. Slavov, T., A. Mitov, J. Kralev. Advanced Embedded Control of Electrohydraulic Power Steering System. – Cybernetics and Information Technologies, Vol. 20, 2020, No 2, pp. 105-121.10.2478/cait-2020-0020 Search in Google Scholar

2. Kratmüller, M. Real-Time Measurement System for High Temperature Drop Calorimeter. – Cybernetics and Information Technologies, Vol. 10, 2010, No 1, pp. 64-71. Search in Google Scholar

3. Stoyanov, B., V. Peichev, Y. Beyazov. Investigations on the Design of Discrete Pneumatic-to-Electrical Transducers of Low Pressure. – Cybernetics and Information Technologies, Vol. 8, 2008, No 1, pp. 65-72. Search in Google Scholar

4. Liansheng, L. Research Progress on Alternative Refrigerants and Their Development Trend. – J. of Refrigeration, Vol. 6, 2011. Search in Google Scholar

5. Lee, M. Y., H. S. Lee, H. P. Won. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle. – Energies, Vol. 5, 2012, No 5, pp. 1371-1383.10.3390/en5051371 Search in Google Scholar

6. Zhang, X. Research on Semiconductor Refrigeration System with Current Adaptive Temperature. – Advances in Engeneering Research, Vol. 148, 2017, pp. 53-56. Search in Google Scholar

7. Huang, H., S. Fu, P. Zhang, L. Sun. Design of a Small Temperature Control System Based on TEC. – In: Proc. of 9th Int. Symp. Comput. Intell. Des. Isc. 2016, Vol. 1, 2016, pp. 193-196.10.1109/ISCID.2016.1051 Search in Google Scholar

8. Hu, H. M., T. S. Ge, Y. J. Dai, R. Z. Wang. Experimental Study on Water-Cooled Thermoelectric Cooler for CPU under Severe Environment. – Int. J. of Refrigeration, Vol. 62, 2016, pp. 30-38.10.1016/j.ijrefrig.2015.10.015 Search in Google Scholar

9. Andersen, J. R. Thermoelectric Air Conditioner for Submarines. – Adv. Energy Convers, Vol. 2, 1962, pp. 241-248.10.1016/0365-1789(62)90028-0 Search in Google Scholar

10. Marlow, R., R. J. Buist, J. L. Nelson. System Aspects of Thermoelectric Coolers for Hand Held Thermal Viewers, Garland, TX, US, Marlow Industries, Inc., 1982. Search in Google Scholar

11. Jui, J. J., M. A. Ahmad. A Hybrid Metaheuristic Algorithm for Identification of Continuous-Time Hammerstein Systems. – Appl Math Model, Vol. 95, 2021, pp. 339-360.10.1016/j.apm.2021.01.023 Search in Google Scholar

12. Jui, J. J., M. H. Suid, M. R. Ghazali, M. A. Ahmad, M. Z. M. Tumari. Modified Sine Cosine Algorithm for Identification of Liquid Slosh Based on Continuous-Time Hammerstein Model. – J Phys Conf Ser, Vol. 1529, 2020, No 4, pp. 42-90.10.1088/1742-6596/1529/4/042090 Search in Google Scholar

13. Li, C. H., X. J. Zhu, G. Y. Cao, S. Sui, M. R. Hu. Identification of the Hammerstein Model of a PEMFC Stack Based on Least Squares Support Vector Machines. – J. Power Sources, Vol. 175, 2008, No 1, pp. 303-316.10.1016/j.jpowsour.2007.09.049 Search in Google Scholar

14. Zhang, Q., Q. Wang, G. Li. Nonlinear Modeling and Predictive Functional Control of Hammerstein System with Application to the Turntable Servo System. – Mech. Syst. Signal Process, Vol. 72-73, 2016, pp. 383-394.10.1016/j.ymssp.2015.09.011 Search in Google Scholar

15. Saleem, A., M. Mesbah, S. Al-Ratout. Nonlinear Hammerstein Model Identification of Amplified Piezoelectric Actuators (APAs): Experimental Considerations. – In: Proc. of 4th International Conference on Control, Decision and Information Technologies (CoDIT’17), 2017, pp. 633-638.10.1109/CoDIT.2017.8102665 Search in Google Scholar

16. Zhang, H. T., B. Hu, L. Li, Z. Chen, D. Wu, B. Xu et al. Distributed Hammerstein Modeling for Cross-Coupling Effect of Multiaxis Piezoelectric Micropositioning Stages. – IEEE/ASME Trans Mechatronics, Vol. 23, 2018, No 6, pp. 2794-2804.10.1109/TMECH.2018.2870864 Search in Google Scholar

17. Ai, Q., Y. Peng, J. Zuo, W. Meng, Q. Liu. Hammerstein Model for Hysteresis Characteristics of Pneumatic Muscle Actuators. – Int. J. Intell. Robot. Appl., Vol. 3, 2019, No 1, pp. 33-44.10.1007/s41315-019-00084-5 Search in Google Scholar

18. Hou, J., F. Chen, P. Li, Z. Zhu. Fixed Point Iteration-Based Subspace Identification of Hammerstein State-Space Models. – IET Control Theory Appl., Vol. 13, 2019, No 8, pp. 1173-1181.10.1049/iet-cta.2018.6041 Search in Google Scholar

19. Hou, J., T. Liu, Q. G. Wang. Subspace Identification of Hammerstein-Type Nonlinear Systems Subject to Unknown Periodic Disturbance. – Int. J. Control, 2019, pp. 1-11. Search in Google Scholar

20. Ding, F., H. Chen, L. Xu, J. Dai, Q. Li, T. Hayat. A Hierarchical Least Squares Identification Algorithm for Hammerstein Nonlinear Systems Using the Key Term Separation. – J. of the Franklin Inst., Vol. 355, 2018, No 8, pp. 3737-3752.10.1016/j.jfranklin.2018.01.052 Search in Google Scholar

21. Wang, J., A. Sano, T. Chen, B. Huang. A Blind Approach to Identification of Hammerstein Systems. – In: Lect. Notes in Control and Inf. Sci., Vol. 404. 2010, pp. 293-312.10.1007/978-1-84996-513-2_18 Search in Google Scholar

22. Gotmare, A., R. Patidar, N. V. George. Nonlinear System Identification Using a Cuckoo Search Optimized Adaptive Hammerstein Model. – Expert. Syst. Appl., Vol. 42, 2015, No 5, pp. 2538-2546.10.1016/j.eswa.2014.10.040 Search in Google Scholar

23. Al-Duwaish, H. N. Identification of Hammerstein Models with Known Nonlinearity Structure Using Particle Swarm Optimization. – Arab. J. of Sci. Eng., Vol. 36, 2011, No 7, pp. 1269-1276.10.1007/s13369-011-0120-2 Search in Google Scholar

24. Cuevas, E., P. Díaz, O. Avalos, D. Zaldívar, M. Pérez-Cisneros, DE CP et al. Nonlinear System Identification Based on ANFIS-Hammerstein Model Using Gravitational Search Algorithm. – Appl. Intell., Vol. 48, 2018, No 1, pp. 182-203.10.1007/s10489-017-0969-1 Search in Google Scholar

25. Jui, J. J., M. H. Suid, Z. Musa, M. A. Ahmad. Identification of Liquid Slosh Behavior Using Continuous-Time Hammerstein Model Based Sine Cosine Algorithm. – In: Proc. of 11th National Technical Seminar on Unmanned System Technology (NUSYS’19), pp. 345-356.10.1007/978-981-15-5281-6_24 Search in Google Scholar

26. Mirjalili, S., S. M. Mirjalili, A. Hatamlou. Multi-Verse Optimizer: A Nature-Inspired Algorithm for Global Optimization. – Neural Comput. Appl., Vol. 27, 2016, No 2, pp. 495-513.10.1007/s00521-015-1870-7 Search in Google Scholar

27. Jui, J. J., M. A. Ahmad, M. I. M. Rashid. Modified Multi-Verse Optimizer for Solving Numerical Optimization Problems. – In: Proc. of IEEE Int. Conf. Autom. Control Intell. Syst. (I2CACIS’20), 2020, pp. 81-86.10.1109/I2CACIS49202.2020.9140097 Search in Google Scholar

28. Ali, E. E., M. A. El-Hameed, A. A. El-Fergany, M. M. El-Arini. Parameter Extraction of Photovoltaic Generating Units Using Multi-Verse Optimizer. – Sustain Energy Technol. Assessments, Vol. 17, 2016, pp. 68-76.10.1016/j.seta.2016.08.004 Search in Google Scholar

29. Jangir, P., S. A. Parmar, I. N. Trivedi, R. H. Bhesdadiya. A Novel Hybrid Particle Swarm Optimizer with Multi Verse Optimizer for Global Numerical Optimization and Optimal Reactive Power Dispatch Problem. – Eng. Sci. Technol. an Int. J., Vol. 20, 2017, No 2, pp. 570-586.10.1016/j.jestch.2016.10.007 Search in Google Scholar

30. Guha, D., P. K. Roy, S. Banerjee. Multi-Verse Optimisation: A Novel Method for Solution of Load Frequency Control Problem in Power System. – IET Gener. Transm. Distrib., Vol. 11, 2017, No 14, pp. 3601-3611.10.1049/iet-gtd.2017.0296 Search in Google Scholar

31. Fathy, A., H. Rezk. Multi-Verse Optimizer for Identifying the Optimal Parameters of PEMFC Model. – Energy, Vol. 143, 2018, pp. 634-644.10.1016/j.energy.2017.11.014 Search in Google Scholar

32. Wang, X., D. Luo, X. Zhao, Z. Sun. Estimates of Energy Consumption in China Using a Self-Adaptive Multi-Verse Optimizer-Based Support Vector Machine with Rolling Cross-Validation. – Energy, Vol. 152, 2018, pp. 539-548.10.1016/j.energy.2018.03.120 Search in Google Scholar

33. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. – Knowledge-Based Syst., 2016, pp. 120-133.10.1016/j.knosys.2015.12.022 Search in Google Scholar

34. Abd Elaziz, M. E., A. A. Ewees, D. Oliva, P. Duan, S. Xiong. A Hybrid Method of Sine Cosine Algorithm and Differential Evolution for Feature Selection. – In: Lect. Notes in Comput. Sci. Vol. 10638. 2017, pp. 145-155.10.1007/978-3-319-70139-4_15 Search in Google Scholar

35. Al-Qaness, M. A. A., M. A. Elaziz, A. A. Ewees. Oil Consumption Forecasting Using Optimized Adaptive Neuro-Fuzzy Inference System Based on Sine Cosine Algorithm. – IEEE Access, Vol. 6, 2018, pp. 68394-68402.10.1109/ACCESS.2018.2879965 Search in Google Scholar

36. Oliva, D., S. Hinojosa, M. A. Elaziz, N. Ortega-Sánchez. Context Based Image Segmentation Using Antlion Optimization and Sine Cosine Algorithm. – Multimed. Tools Appl., Vol. 77, 2018, No 19, pp. 25761-25797.10.1007/s11042-018-5815-x Search in Google Scholar

37. Sayed, G. I., A. Darwish, A. E. Hassanien. Quantum Multiverse Optimization Algorithm for Optimization Problems. – Neural Comput. Appl., Vol. 31, 2019, No 7, pp. 2763-2780.10.1007/s00521-017-3228-9 Search in Google Scholar

38. Huang, B. J., C. L. Duang. System Dynamic Model and Temperature Control of a Thermoelectric Cooler. – Int. J. of Refrigeration, Vol. 23, 2000, No 3, pp. 197-207.10.1016/S0140-7007(99)00045-6 Search in Google Scholar

eISSN:
1314-4081
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Computer Sciences, Information Technology