Accès libre

Molecular Dynamics Simulations of Acetylcholinesterase – Beta-Amyloid Peptide Complex

À propos de cet article

Citez

1. Kelly, J. W. Alternative Conformations of Amyloidogenic Proteins Govern Their Behavior. – Current Opinion in Structural Biology, Vol. 6, 1996, No 1, pp. 11-17.10.1016/S0959-440X(96)80089-3Search in Google Scholar

2. Koo, E. H., P. T. Lansbury, J. W. Kelly. Amyloid Diseases: Abnormal Protein Aggregation in Neurodegeneration. – Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, 1999, No 18, pp. 9989-9990.10.1073/pnas.96.18.9989Search in Google Scholar

3. Ballard, C., S. Gauthier, A. Corbett, C. Brayne, D. Aarsland, E. Jones. Alzheimer’s Disease. – Lancet (London, England), Vol. 377, 2011, No 9770, pp. 1019-1031.10.1016/S0140-6736(10)61349-9Search in Google Scholar

4. Selkoe, D. J. Alzheimer’s Disease : Genes, Proteins, and Therapy. – Physiological Reviews, Vol. 81, 2001, No 2, pp. 741-766.10.1152/physrev.2001.81.2.741Search in Google Scholar

5. Goedert, M., M. G. Spillantini. A Century of Alzheimer’s Disease. – Science, Vol. 314, 2006, No 5800, pp. 777-781.10.1126/science.1132814Search in Google Scholar

6. Hardy, J., D. Selokoe. The Amyloid Hypothesis of Alzheimer ’s Disease. – Science, Vol. 297, 2002, No 5580, pp. 353-357.10.1126/science.1072994Search in Google Scholar

7. Lazarov, O., M. P. Demars. All in the Family: How the Apps Regulate Neurogenesis. – Frontiers in Neuroscience, Vol. 6, 2012, No JUN, pp. 1-21.10.3389/fnins.2012.00081Search in Google Scholar

8. Kamenetz, F., T. Tomita, H. Hsieh, G. Seabrook, D. Borchelt, T. Iwatsubo, S. Sisodia, R. Malinow. APP Processing and Synaptic Function. – Neuron, Vol. 37, 2003, No 6, pp. 925-937.10.1016/S0896-6273(03)00124-7Search in Google Scholar

9. Vardy, E. R. L. C., A. J. Catto, N. M. Hooper. Proteolytic Mechanisms in Amyloid-β Metabolism: Therapeutic Implications for Alzheimer’s Disease. – Trends in Molecular Medicine, Vol. 11, 2005, No 10, pp. 464-472.10.1016/j.molmed.2005.08.00416153892Search in Google Scholar

10. Beel, A. J., C. R. Sanders. Substrate Specificity of γ-Secretase and Other Intramembrane Proteases. – Cellular and Molecular Life Sciences, Vol. 65, 2008, No 9, pp. 1311-1334.10.1007/s00018-008-7462-2256997118239854Search in Google Scholar

11. Jarrett, J. T., E. P. Berger, P. T. Lansbury. The Carboxy Terminus of the Beta Amyloid Protein is Critical for the Seeding of Amyloid Formation: Implications for the Pathogenesis of Alzheimer’s Disease. – Biochemistry, Vol. 32, 1993, No 18, pp. 4693-4697.10.1021/bi00069a001Search in Google Scholar

12. Harper, J. D., P. T. Lansbury. Models of Amyloid Seeding in Alzheimer’s Disease and Scrapie: Mechanistic Truths and Physiological Consequences of the Time-Dependent Solubility of Amyloid Proteins. – Annual Review of Biochemistry, Vol. 66, 1997, No 1, pp. 385-407.10.1146/annurev.biochem.66.1.385Search in Google Scholar

13. Harper, J. D., C. M. Lieber, P. T. Lansbury. Atomic Force Microscopic Imaging of Seeded Fibril Formation and Fibril Branching by the Alzheimer’s Disease Amyloid-β Protein. – Chemistry & Biology, Vol. 4, 1997, No 12, pp. 951-959.10.1016/S1074-5521(97)90303-3Search in Google Scholar

14. Soto, C., E. M. Castaño, B. Frangione, N. C. Inestrosa. The -Helical to -Strand Transition in the Amino-Terminal Fragment of the Amyloid -Peptide Modulates Amyloid Formation. – Journal of Biological Chemistry, Vol. 270, 1995, No 7, pp. 3063-3067.10.1074/jbc.270.7.30637852387Search in Google Scholar

15. Glabe, C. G. Structural Classification of Toxic Amyloid Oligomers. – Journal of Biological Chemistry, Vol. 283, 2008, No 44, pp. 29639-29643.10.1074/jbc.R800016200257308718723507Search in Google Scholar

16. Strittmatter, W. J., A. D. Roses. Apolipoprotein E and Alzheimer Disease. – Proceedings of the National Academy of Sciences, Vol. 92, 1995, No 11, pp. 4725-4727.10.1073/pnas.92.11.4725417797761390Search in Google Scholar

17. Holtzman, D. M., K. R. Bales, T. Tenkova, A. M. Fagan, M. Parsadanian, L. J. Sartorius, B. Mackey, J. Olney, D. McKeel, D. Wozniak, S. M. Paul. Apolipoprotein E Isoform-Dependent Amyloid Deposition and Neuritic Degeneration in a Mouse Model of Alzheimer’s Disease. – Proceedings of the National Academy of Sciences, Vol. 97, 2000, No 6, pp. 2892-2897.10.1073/pnas.0500047971602610694577Search in Google Scholar

18. Bronfman, F. C., A. Alvarez, C. Morgan, N. C. Inestrosa. Laminin Blocks the Assembly of Wild-Type Aβ and the Dutch Variant Peptide into Alzheimer’s Fibrils. – Amyloid, Vol. 5, 1998, No 1, pp. 16-23.10.3109/135061298090072859547001Search in Google Scholar

19. Nilsson, L. N. G., K. R. Bales, G. DiCarlo, M. N. Gordon, D. Morgan, S. M. Paul, H. Potter. α-1-Antichymotrypsin Promotes β-Sheet Amyloid Plaque Deposition in a Transgenic Mouse Model of Alzheimer’s Disease. – The Journal of Neuroscience, Vol. 21, 2001, No 5, pp. 1444-1451.10.1523/JNEUROSCI.21-05-01444.2001Search in Google Scholar

20. Hughes, S. R., O. Khorkova, S. Goyal, J. Knaeblein, J. Heroux, N. G. Riedel, S. Sahasrabudhe. 2-Macroglobulin Associates with -Amyloid Peptide and Prevents Fibril Formation. – Proceedings of the National Academy of Sciences, Vol. 95, 1998, No 6, pp. 3275-3280.10.1073/pnas.95.6.3275197329501253Search in Google Scholar

21. Thambisetty, M., A. Simmons, L. Velayudhan, A. Hye et al. Association of Plasma Clusterin Concentration with Severity, Pathology, and Progression in Alzheimer Disease. – Archives of General Psychiatry, Vol. 67, 2010, No 7, pp. 739-748.10.1001/archgenpsychiatry.2010.78Search in Google Scholar

22. Snow, A. D., R. Sekiguchi, D. Nochlin, P. Fraser, K. Kimata, A. Mizutani, M. Arai, W. A. Schreier, D. G. Morgan. An Important Role of Heparan Sulfate Proteoglycan (Perlecan) in a Model System for the Deposition and Persistence of Fibrillar Aβ-Amyloid in Rat Brain. – Neuron, Vol. 12, 1994, No 1, pp. 219-234.10.1016/0896-6273(94)90165-1Search in Google Scholar

23. Inestrosa, N. C., A. Alvarez, C. A. Pérez, R. D. Moreno, M. Vicente, C. Linker, O. I. Casanueva, C. Soto, J. Garrido. Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer’s Fibrils: Possible Role of the Peripheral Site of the Enzyme. – Neuron, Vol. 16, 1996, No 4, pp. 881-891.10.1016/S0896-6273(00)80108-7Search in Google Scholar

24. Rees, T. Acetylcholinesterase Promotes Beta-Amyloid Plaques in Cerebral Cortex. – Neurobiology of Aging, Vol. 24, 2003, No 6, pp. 777-787.10.1016/S0197-4580(02)00230-0Search in Google Scholar

25. Small, D. H., S. Michaelson, G. Sberna. Non-Classical Actions of Cholinesterases: Role in Cellular Differentiation, Tumorigenesis and Alzheimer’s Disease. – Neurochemistry International, Vol. 28, 1996, No 5-6, pp. 453-483.10.1016/0197-0186(95)00099-2Search in Google Scholar

26. Soreq, H., S. Seidman. Acetylcholinesterase – New Roles for an Old Actor. – Nature Reviews Neuroscience, Vol. 2, 2001, No 4, pp. 294-302.10.1038/35067589Search in Google Scholar

27. Inestrosa, N. C., A. Perelman. Distribution and Anchoring of Molecular Forms of Acetylcholinesterase. – Trends in Pharmacological Sciences, Vol. 10, 1989, No 8, pp. 325-329.10.1016/0165-6147(89)90067-9Search in Google Scholar

28. Fernandez, H. L., R. D. Moreno, N. C. Inestrosa. Tetrameric (G4) Acetylcholinesterase: Structure, Localization, and Physiological Regulation. – Journal of Neurochemistry, Vol. 66, 2002, No 4, pp. 1335-1346.10.1046/j.1471-4159.1996.66041335.x8627284Search in Google Scholar

29. Campos, E. O., A. Alvarez, N. C. Inestrosa. Brain Acetylcholinesterase Promotes Amyloid-β-Peptide Aggregation But Does Not Hydrolyze Amyloid Precursor Protein Peptides. – Neurochemical Research, Vol. 23, 1998, No 2, pp. 135-140.10.1023/A:1022416505725Search in Google Scholar

30. Morán, M. A., E. J. Mufson, P. Gómez-Ramos. Colocalization of Cholinesterases with β-Amyloid Protein in Aged and Alzheimer’s Brains. – Acta Neuropathologica, Vol. 85, 1993, No 4, pp. 362-369.10.1007/BF003344458480510Search in Google Scholar

31. Chacón, M. A., A. E. Reyes, N. C. Inestrosa. Acetylcholinesterase Induces Neuronal Cell Loss, Astrocyte Hypertrophy and Behavioral Deficits in Mammalian Hippocampus. – Journal of Neurochemistry, Vol. 87, 2003, No 1, pp. 195-204.10.1046/j.1471-4159.2003.01985.xSearch in Google Scholar

32. Inestrosa, N. C., A. Alvarez, J. Garrido, F. Calderón, F. C. Bronfman, F. Dajas, M. K. Gentry, B. P. Doctor. Acetylcholinesterase Promotes Alzheimer’s β-Amyloid Fibril Formation. – In: Alzheimer’s Disease: Biology, Diagnosis and Therapeutics. Vol. 1997. Chichester, Wiley, 1997, pp. 499-508.Search in Google Scholar

33. Reyes, A. E., M. A. Chacón, M. C. Dinamarca, W. Cerpa, C. Morgan, N. C. Inestrosa. Acetylcholinesterase-Aβ Complexes are More Toxic Than Aβ Fibrils in Rat Hippocampus. – The American Journal of Pathology, Vol. 164, 2004, No 6, pp. 2163-2174.10.1016/S0002-9440(10)63774-1Search in Google Scholar

34. Bolognesi, M. L., A. Minarini, M. Rosini, V. Tumiatti, C. Melchiorre. From Dual Binding Site Acetylcholinesterase Inhibitors to Multi-Target-Directed Ligands (MTDLs): A Step Forward in the Treatment of Alzheimers Disease. – Mini-Reviews in Medicinal Chemistry, Vol. 8, 2008, No 10, pp. 960-967.10.2174/13895570878574065218782050Search in Google Scholar

35. De Ferrari, G. V., M. A. Canales, I. Shin, L. M. Weiner, I. Silman, N. C. Inestrosa. A Structural Motif of Acetylcholinesterase That Promotes Amyloid β-Peptide Fibril Formation. – Biochemistry, Vol. 40, 2001, No 35, pp. 10447-10457.10.1021/bi010139211523986Search in Google Scholar

36. Hou, L.-N., J.-R. Xu, Q.-N. Zhao, X.-L. Gao, Y.-Y. Cui, J. Xu, H. Wang, H.-Z. Chen. A New Motif in the N-Terminal of Acetylcholinesterase Triggers Amyloid-β Aggregation and Deposition. – CNS Neuroscience & Therapeutics, Vol. 20, 2014, No 1, pp. 59-66.10.1111/cns.12161649301023981668Search in Google Scholar

37. Mishra, P., S. R. Ayyannan, G. Panda. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design. – ChemMedChem, Vol. 10, 2015, No 9, pp. 1467-1474.10.1002/cmdc.20150021526230674Search in Google Scholar

38. Lushchekina, S. V., E. D. Kots, D. A. Novichkova, K. A. Petrov, P. Masson. Role of Acetylcholinesterase in β-Amyloid Aggregation Studied by Accelerated Molecular Dynamics. – BioNanoScience, Vol. 7, 2017, No 2, pp. 396-402.10.1007/s12668-016-0375-xSearch in Google Scholar

39. Cheung, J., M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. – Journal of Medicinal Chemistry, Vol. 55, 2012, No 22, pp. 10282-10286.10.1021/jm300871x23035744Search in Google Scholar

40. Sticht, H., P. Bayer, D. Willbold, S. Dames, C. Hilbich, K. Beyreuther, R. W. Frank, P. Rosch. Structure of Amyloid A4-(1-40)-Peptide of Alzheimer’s Disease. – European Journal of Biochemistry, Vol. 233, 1995, No 1, pp. 293-298.10.1111/j.1432-1033.1995.293_1.x7588758Search in Google Scholar

41. Lyskov, S., J. J. Gray. The RosettaDock Server for Local Protein-Protein Docking. – Nucleic Acids Research, Vol. 36 (Web Server issue), 2008, pp. W233-W238.10.1093/nar/gkn216244779818442991Search in Google Scholar

42. Wang, J., R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case. Development and Testing of a General Amber Force Field. – Journal of Computational Chemistry, Vol. 25, 2004, No 9, pp. 1157-1174.10.1002/jcc.20035Search in Google Scholar

43. Adelman, S. A., J. D. Doll. Generalized Langevin Equation Approach for Atom/Solid Surface Scattering: Collinear Atom/Harmonic Chain Model. – The Journal of Chemical Physics, Vol. 61, 1974, No 10, pp. 4242-4245.10.1063/1.1681723Search in Google Scholar

44. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak. Molecular Dynamics with Coupling to an External Bath. – The Journal of Chemical Physics, Vol. 81, 1984, No 8, pp. 3684-3690.10.1063/1.448118Search in Google Scholar

45. Maier, J. A., C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. – Journal of Chemical Theory and Computation, Vol. 11, 2015, No 8, pp. 3696-3713.10.1021/acs.jctc.5b00255Search in Google Scholar

46. Darden, T., D. York, L. Pedersen. Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems. – The Journal of Chemical Physics, Vol. 98, 1993, No 12, pp. 10089-10092.10.1063/1.464397Search in Google Scholar

47. Ciccotti, G., J. P. Ryckaert. Molecular Dynamics Simulation of Rigid Molecules. – Computer Physics Reports, Vol. 4, 1986, No 6, pp. 346-392.10.1016/0167-7977(86)90022-5Search in Google Scholar

48. Roe, D. R., T. E. Cheatham. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. – Journal of Chemical Theory And Computation, Vol. 9, 2013, No 7, pp. 3084-3095.10.1021/ct400341pSearch in Google Scholar

49. Weiser, J., P. S. Shenkin, W. C. Still. Approximate Atomic Surfaces From Linear Combinations of Pairwise Overlaps (LCPO). – Journal of Computational Chemistry, Vol. 20, 1999, No 2, pp. 217-230.10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-ASearch in Google Scholar

50. Case, D. A., I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti et al. Amber 2018. Reference Manual. Vol. 2018. San Francisco, University of California.Search in Google Scholar

51. Ivanov, S. M., I. Dimitrov, I. A. Doytchinova. Bridging Solvent Molecules Mediate RNase A – Ligand Binding. – PLoS ONE, Vol. 14, 2019, No 10, pp. 1-23.10.1371/journal.pone.0224271Search in Google Scholar

eISSN:
1314-4081
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Computer Sciences, Information Technology