Accès libre

Numerical Solution of Integro-Differential Equations Modelling the Dynamic Behavior of a Nano-Cracked Viscoelastic Half-Plane

À propos de cet article

Citez

1. Arroyo, M. T. V., T. Belytschkho. An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films. – J. Mech. Phys. Solids, Vol. 50, 2002, pp. 1941-1977.10.1016/S0022-5096(02)00002-9Search in Google Scholar

2. Dineva, P. S., T. Rangelov. Wave Scattering by Cracks at Macro- and Nano-Scale in Anisotropic Plane by BIEM. – J. Theor. Appl. Mech., Vol. 46, 2016, No 4, pp. 19-35.10.1515/jtam-2016-0019Search in Google Scholar

3. Dong, C. Y., E. Pan. Boundary Element Analysis of Inhomogeneities of Arbitrary Shapes with Surface and Interface Effects. – Eng. Anal. Bound. Elem., Vol. 35, 2011, pp. 996-1002.10.1016/j.enganabound.2011.03.004Search in Google Scholar

4. Gradshteyn, I. S., I. M. Ryzhik. Tables of Integrals, Series, and Products. New York, Academic Press, 1965.Search in Google Scholar

5. Gurtin, M. E., A. I. Murdoch. A Continuum Theory of Elastic Material Surfaces. – Arch. Ration. Mech. Anal., Vol. 57, 1975, pp. 291-323.10.1007/BF00261375Search in Google Scholar

6. MATHEMATIKA. Champaign, Illinois, Wolfram Research, 1987.Search in Google Scholar

7. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London, UK, Imperial College Press, 2010.10.1142/p614Search in Google Scholar

8. Makrou, A. A., G. D. Manolis. A Fractional Derivative Zener Model for the Numerical Simulation of Base Isolated Structures. – Bull. Earthquake Eng., Vol. 14, 2016, No 1, pp. 283-295.10.1007/s10518-015-9801-7Search in Google Scholar

9. Manolis, G. D., P. S. Dineva, T. V. Rangelov, F. Wuttke. Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements. – In: Solid Mechanics and Its Applications. Vol. 240. Cham, Switzerland, Springer International Publishers, 2017.10.1007/978-3-319-45206-7Search in Google Scholar

10. Rangelov, T. V., P. S. Dineva. Dynamic Fracture Behavior of a Nano-Crack in a Piezoelectric Plane. – ZAMM, Z. Angew. Math. Mech., Vol. 97, 2017, No 11, pp. 1393-1405.10.1002/zamm.201700072Search in Google Scholar

11. Rangelov, T. V., P. S. Dineva, G. D. Manolis. BIEM Analysis of a Graded Nano-Cracked Elastic Half-Plane under Time-Harmonic Waves. – ZAMM, Vol. 100, 2020, 100:e202000021. https://doi.org/10.1002/zamm.20200002110.1002/zamm.202000021Search in Google Scholar

12. Rangelov, T. V., P. S. Dineva, G. D. Manolis. Dynamic Response of a Cracked Viscoelastic Anisotropic Plane Using Boundary Elements and Fractional Derivatives. – J. Theor. Appl. Mech., Vol. 48, 2018, No 2, pp. 24-49.10.2478/jtam-2018-0009Search in Google Scholar

13. Rangelov, T. V., G. D. Manolis. Time-Harmonic Elastodynamic Green’s Function for the Half-Plane Modelled by a Restricted Inhomogeneity of Quadratic Type. – J. Mech. Mater. Strut., Vol. 5, 2010, No 6, pp. 909-924.10.2140/jomms.2010.5.909Search in Google Scholar

14. Schanz, M. Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Lecture Notes in Applied Mechanics. Vol. 2. Berlin, Springer, 2001.10.1007/978-3-540-44575-3Search in Google Scholar

15. Sharma, P., S. Ganti, N. Bhate. Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities. – Appl. Phys. Lett., Vol. 82, 2003, pp. 535-537.10.1063/1.1539929Search in Google Scholar

eISSN:
1314-4081
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Computer Sciences, Information Technology