1. bookVolume 12 (2012): Edition 2 (June 2012)
Détails du magazine
License
Format
Magazine
eISSN
1314-4081
ISSN
1311-9702
Première parution
13 Mar 2012
Périodicité
4 fois par an
Langues
Anglais
Accès libre

A New Approach for Mammogram Image Classification Using Fractal Properties

Publié en ligne: 16 Mar 2013
Volume & Edition: Volume 12 (2012) - Edition 2 (June 2012)
Pages: 69 - 83
Détails du magazine
License
Format
Magazine
eISSN
1314-4081
ISSN
1311-9702
Première parution
13 Mar 2012
Périodicité
4 fois par an
Langues
Anglais

1. Kobatake, H., M. Murakami, H. Takeo, S. Nawano. Computerized Detection of Malignant Tumors on Digital Mammograms. - In: IEEE Tran. Medical Imaging, Vol. 18, 1999, No 5, 369-378.10.1109/42.77416410416798Search in Google Scholar

2. Zhou, X. Q., H. K. Huang, S. L. Lou. Authenticity and Integrity of Digital Mammography Images. - IEEE Trans on Medical Imaging, Vol. 20, 2001, No 8, 784-791. 10.1109/42.93824611513029Search in Google Scholar

3, Lundahi, T., W. J. Ohley, S. M. Kay, R. Siffert. Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture. - In: IEEE Trans. Med. Imaging, Vol. MI- 5, September 1986.10.1109/TMI.1986.430776418244001Search in Google Scholar

4. Erkang, C., X. Nianhua, L. Haibin, P. R. Bakic, A. D. A. Maidment, V. Megalooikonomou. Mammographic Image Classification Using Histogram Intersection. - In: IEEE Proc. ISBI’10, 2010, 197-200.Search in Google Scholar

5. Hassanien, E. A., M. H. Jafar Ali. Rough Set Approach for Classification of Breast Cancer Mammogram Images. - In: Int.Workshop on Fuzzy and App., 2003, 224-231.10.1007/10983652_28Search in Google Scholar

6. Lúcio, F. A., C. S. C. Aristófanes, A. K. Barros. Diagnosis of Breast Cancer in Digital Mammograms Using Independent Component Analysis and Neural Networks. - LNCS, Vol. 3773, 2005, 460-469.Search in Google Scholar

7. Arod, T., M. Kurdziel, E. O. D. Sevre, D. A. Yuen. Pattern Recognition Techniques for Automatic Detection of Suspicious-Looking Anomalies in Mammograms. − Comput. Methods Prog. Biomed, 2005, 135-149.10.1016/j.cmpb.2005.03.00915925425Search in Google Scholar

8. Huai, Li, K. J. R. Liu, S.-C. B. Lo. Fractal Modeling and Segmentation for the Enhancement of Microcalcification in Digital Mammograms. - In: IEEE Trans. Med. Imaging, 1997, 785-798.10.1109/42.6508759533579Search in Google Scholar

9. Zhang, P., K. Kumar, B. Verma. A Hybrid Classifier for Mass Classification with Different Kinds of Features in Mammography. - LNCS, Vol. 3614, 2005.10.1007/11540007_38Search in Google Scholar

10. Buciu, I., A. Gacsadi. Directional Features for Automatic Tumor Classification of Mammogram Images. − Biomedical Signal Processing and Control, 2011 (in Press).10.1016/j.bspc.2010.10.003Search in Google Scholar

11. Dua, S., S. Harpreet, H. W. Thompson. Associative Classification of Mammograms Using Weighted Rules. − Expert Syst. Appl., 2009, 9250-9259.10.1016/j.eswa.2008.12.050277424220160889Search in Google Scholar

12. Antonie, M.-L., O. R. Zaiane, A. Coman. Application of Data Mining Techniques for Medical Image Classification. - MDM/KDD, 2001, 94-101.Search in Google Scholar

13. Petroudi, S., T. Kadir, M. Brady. Automatic Classification of Mammographic Parenchymal Patterns: A Statistical Approach. - In: IEEE Proc. EMBS, 2003, 798-801.Search in Google Scholar

14. Lekshmi, S., K. Revathy, S. R. Prabhakaran Nayar. Galaxy Classification Using Fractal Signature. - A&A, Vol. 405, 2003, 1163-1167.10.1051/0004-6361:20030541Search in Google Scholar

15. Don, S., K. Revathy. Classifying Remotely Sensed Data Using Fractal Features. - AIPR, USA, 2007, 262-266.10.1109/ICCIMA.2007.175Search in Google Scholar

16. Heath, M., K. Bowyer, D. Kopans, Jr. P. Kegelmeyer, R. Moore, K. Chang, S. Munishkumaran. Current Status of the Digital Database Screening Mammography. − In: Proceedings of the 4th IWDM, 1997, 457-460.10.1007/978-94-011-5318-8_75Search in Google Scholar

17. Suckling, J. et al. The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. − International Congress Series, Vol. 1069 1994, 375-378.Search in Google Scholar

18. American College of Radiology, Illustrated Breast Imaging Reporting and Data System BIRADS. Reston,VA, American College of Radiolog., 1993.Search in Google Scholar

19. Mandelbrot, B. B. The Fractal Geometry of Nature. San Francisco, CA, W. H. Freeman, 1982.Search in Google Scholar

20. Yuan, Yan Tang. Wavelet Theory Approach To Pattern Recognition. 2nd Edition. World Scientific.Search in Google Scholar

21. Douketis, C., W. Zhouhang, T. L. Haslett, M. Moskovits. Fractal Character of Cold-Deposited Silver Films Determined by Low-Temparature Scanning Tunneling Microscopy. - Phys. Rev., Vol. B51, 1995, 11022-11031.10.1103/PhysRevB.51.11022Search in Google Scholar

22. Espinal, F., T. L. Hunberger, B. Jawerth, T. Kubota. Galaxy Classification Using Fractal Signature. - Opt. Eng., Vol. 37, 1998, p. 166.10.1117/1.601844Search in Google Scholar

23. Peleg, S., N. J. Hartley, R. Avnird. Multiple Resolution Texture Analysis and Classification. - In: IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI6, 1984, 518-523.10.1109/TPAMI.1984.476755721869220Search in Google Scholar

24. Zhang, W., K. Doi, M. Giger, R. Nishikawa, R. Schmidt. An Improved Shift- Invariant Artificial Neural Network for Computerized Detection of Clustered Microcalcification in Digital Mammograms. - Med. Phys., Vol. 23, 1996, No 4, 595-601.10.1118/1.5978918860907Search in Google Scholar

25. White, R. L. Object Classification in Astronomical Images. − In: Statistical Challenges in Modern Astronomy II. Springer, 1997.10.1007/978-1-4612-1968-2_8Search in Google Scholar

26. Karahaliou, A., S. Skiadopoulos, I. Boniatis, P. Sakellaropoulos, E. Likaki, G. Panayiotakis, L. Costaridou. Texture Analysis of Tissue Surrounding Microcalcifications on Mammograms for Breast Cancer Diagnosis. - The British Journal of Radiology, 2007, 684-656.10.1259/bjr/3041575117621604Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo