Accès libre

Nonlocal-to-local limit in linearized viscoelasticity

,  et   
25 mai 2024
À propos de cet article

Citez
Télécharger la couverture

We study the quasistatic evolution of a linear peridynamic Kelvin-Voigt viscoelastic material. More specifically, we consider the gradient flow of a nonlocal elastic energy with respect to a nonlocal viscous dissipation. Following an evolutionary Γ-convergence approach, we prove that the solutions of the nonlocal problem converge to the solution of the local problem, when the peridynamic horizon tends to 0, that is, in the nonlocal-to-local limit.