À propos de cet article

Citez

1. K. Hughes, R. Vignjevic, J. Campbell, T. Vuyst, N. Djordjevic, and L. Papagiannis, From aerospace to offshore: Bridging the numerical simulation gaps–Simulation advancements for fluid-structure interaction problems, International Journal of Impact Engineering, vol. 61, pp. 48–63, 2013.10.1016/j.ijimpeng.2013.05.001 Search in Google Scholar

2. G. Hou, J. Wang, and A. Layton, Numerical Methods for Fluid-Structure Interaction - A Review, Communications in Computational Physics, vol. 12, pp. 337–377, 2012.10.4208/cicp.291210.290411s Search in Google Scholar

3. H.-J. Bungartz and M. Schäfer, Fluid-Structure Interaction: Modelling, Simulation, Optimization. Springer, 2006.10.1007/3-540-34596-5 Search in Google Scholar

4. H.-J. Bungartz, M. Mehl, and M. Schäfer, Fluid-Structure Interaction II. Modelling, Simulation, Optimization. Springer, 2010.10.1007/978-3-642-14206-2 Search in Google Scholar

5. S. Piperno, C. Farhat, and B. Larrouturou, Partitioned procedures for the transient solution of coupled aeroelastic problems - Part I: Model problem, theory and two-dimensional application, Computer Methods in Applied Mechanics and Engineering, vol. 124, pp. 79–112, 1995.10.1016/0045-7825(95)92707-9 Search in Google Scholar

6. M. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol. 69, no. 4, pp. 794–821, 2006.10.1002/nme.1792 Search in Google Scholar

7. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method, Mathematical Models and Methods in Applied Sciences, vol. 17, no. 06, pp. 957–983, 2007.10.1142/S0218202507002170 Search in Google Scholar

8. S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluid-structure algorithms based on Steklov-Poincaré operators, Computer Methods in Applied Mechanics and Engineeering, vol. 195, no. 41-43, pp. 5797–5812, 2006. Search in Google Scholar

9. K.-J. Bathe, H. Zhang, and S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Computers & Structures, vol. 72, no. 1, pp. 1 – 16, 1999.10.1016/S0045-7949(99)00042-5 Search in Google Scholar

10. M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 1, pp. 1 – 23, 2004.10.1016/j.cma.2003.09.006 Search in Google Scholar

11. S. Badia, A. Quaini, and A. Quarteroni, Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect, Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 49, pp. 4216 – 4232, 2008. Search in Google Scholar

12. P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 42-44, pp. 4506–4527, 2005. Search in Google Scholar

13. J. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, M2AN Mathematical Modelling and Numerical Analysis, vol. 37, no. 4, pp. 631–648, 2003.10.1051/m2an:2003049 Search in Google Scholar

14. M. Fernández and M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure coupling, Computers & Structures, vol. 83, no. 2-3, pp. 127–142, 2005.10.1016/j.compstruc.2004.04.021 Search in Google Scholar

15. S. Piperno, Explicit/Implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations, International Journal for Numerical Methods in Fluids, vol. 25, pp. 1207–1226, 1997. Search in Google Scholar

16. E. Burman and M. Fernández, Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method, Comptes Rendus Mathematique, vol. 345, pp. 467–472, 2007.10.1016/j.crma.2007.09.010 Search in Google Scholar

17. M. Bukac, S. Canic, R. Glowinski, J. Tambaca, and A. Quaini, Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement, Journal of Computational Physics, vol. 235, pp. 515 – 541, 2013.10.1016/j.jcp.2012.08.033 Search in Google Scholar

18. J. Degroote and J. Bathe, K.-J.and Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction, Computers & Structures, vol. 87, pp. 793–801, 2009.10.1016/j.compstruc.2008.11.013 Search in Google Scholar

19. J. Degroote and J. Vierendeels, Multi-solver algorithms for the partitioned simulation of fluid–structure interaction, Computer Methods in Applied Mechanics and Engineering, vol. 200, pp. 2195–2210, 2011. Search in Google Scholar

20. T. Richter, A monolithic geometric multigrid solver for fluid-structure interactions in ale formulation, International Journal for Numerical Methods in Engineering, vol. 104, pp. 372–390, 2015.10.1002/nme.4943 Search in Google Scholar

21. A. Slone, K. Pericleous, C. Bailey, M. Cross, and C. Bennett, A finite volume unstructured mesh approach to dynamic fluid-structure interaction: An assessment of the challenge of predicting the onset of flutter, Applied Mathematical Modelling, vol. 28, pp. 211–239, 2004.10.1016/S0307-904X(03)00142-2 Search in Google Scholar

22. P. Cardiff, A. Karac, P. D. Jaeger, H. Jasak, J. Nagy, A. Ivankovic, and Z. Tukovic, An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations, 2018. Search in Google Scholar

23. H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in physics, vol. 12, no. 6, pp. 620–631, 1998.10.1063/1.168744 Search in Google Scholar

24. M. Breuer, G. De Nayer, M. Münsch, T. Gallinger, and R. Wüchner, Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation, Journal of Fluids and Structures, vol. 29, pp. 107–130, 2012.10.1016/j.jfluidstructs.2011.09.003 Search in Google Scholar

25. J. Revstedt, Interaction between an incompressible flow and elastic cantilevers of circular cross-section, International Journal of Heat and Fluid Flow, vol. 43, pp. 244–250, 2013.10.1016/j.ijheatfluidflow.2013.06.004 Search in Google Scholar

26. J. Lorentzon and J. Revstedt, A numerical study of partitioned FSI applied to a cantilever in incompressible turbulent flow, International Journal for Numerical Methods in Engineering, vol. 121, pp. 806–827, 2019.10.1002/nme.6245 Search in Google Scholar

27. L. Bertagna, A. Quaini, and A. Veneziani, Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers, International Journal for Numerical Methods in Fluids, vol. 81, no. 8, pp. 463–488, 2016.10.1002/fld.4192 Search in Google Scholar

28. M. Girfoglio, A. Quaini, and G. Rozza, A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization, Computers & Fluids, vol. 187, pp. 27–45, 2019.10.1016/j.compfluid.2019.05.001 Search in Google Scholar

29. K. Rege and B. Hjertager, Application of foam-extend on turbulent fluid-structure interaction, IOP Conference Series Materials Science and Engineering, vol. 276, p. 012031, 2017. Search in Google Scholar

30. B. Sekutkovski, I. Kostić, A. Simonovic, P. Cardiff, and V. Jazarević, Three-dimensional fluid–structure interaction simulation with a hybrid RANS-LES turbulence model for applications in transonic flow domain, Aerospace Science and Technology, vol. 49, pp. 1–16, 2015.10.1016/j.ast.2015.11.028 Search in Google Scholar

31. J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels, Performance of partitioned procedures in fluid-structure interaction, Computers & Structures, vol. 88, pp. 446–457, 2010.10.1016/j.compstruc.2009.12.006 Search in Google Scholar

32. F.-B. Tian, H. Dai, H. Luo, J. Doyle, and B. Rousseau, Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems, Journal of Computational Physics, vol. 258, pp. 451–469, 2014.10.1016/j.jcp.2013.10.047388407924415796 Search in Google Scholar

33. T. Richter, Goal-oriented error estimation for fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol. 223-224, pp. 28–42, 2011.10.1016/j.cma.2012.02.014 Search in Google Scholar

34. L. Zhu, G.-W. He, S. Wang, L. Miller, X. Zhang, Q. You, and S. Fang, An immersed boundary method based on the lattice boltzmann approach in three dimensions, with application, Computers & Mathematics with Applications, vol. 61, pp. 3506–3518, 2011. Search in Google Scholar

35. T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol. 29, no. 3, pp. 329–349, 1981.10.1016/0045-7825(81)90049-9 Search in Google Scholar

36. P. D. Thomas and C. K. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA Journal, vol. 17, pp. 1030–1037, 1997. Search in Google Scholar

37. I. Demirdzić and M. Perić, Space conservation law in finite volume calculations of fluid flow, International Journal of Numerical Methods in Fluids, vol. 8, pp. 1037–1050, 1988. Search in Google Scholar

38. J. Borggaard, T. Iliescu, and J. Roop, A bounded artificial viscosity large eddy simulation model, SIAM Journal on Numerical Analysis, vol. 47, pp. 622–645, 2009.10.1137/060656164 Search in Google Scholar

39. W. Layton, L. Rebholz, and C. Trenchea, Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow, Journal of Mathematical Fluid Mechanics, vol. 14, pp. 325–354, 2012.10.1007/s00021-011-0072-z Search in Google Scholar

40. J. Hunt, A. Wray, and P. Moin, Eddies stream and convergence zones in turbulent flows, Tech. Rep. CTR-S88, CTR report, 1988. Search in Google Scholar

41. A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Physics of Fluids, vol. 16, no. 10, pp. 3670–3681, 2004. Search in Google Scholar

42. A. L. Bowers, L. G. Rebholz, A. Takhirov, and C. Trenchea, Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering, International Journal for Numerical Methods in Fluids, vol. 70, no. 7, pp. 805–828, 2012.10.1002/fld.2732 Search in Google Scholar

43. Z. Tukovic and H. Jasak, A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow, Computers & Fluids, vol. 55, pp. 70–84, 2012.10.1016/j.compfluid.2011.11.003 Search in Google Scholar

44. H. Jasak and Z. Tukovic, Automatic mesh motion for the unstructured finite volume method, Transactions of FAMENA, vol. 30, pp. 1–20, 2006. Search in Google Scholar

45. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. Springer Verlag, 2007.10.1007/978-0-387-22750-4 Search in Google Scholar

46. Z. Tukovic, A. Karac, P. Cardi, H. Jasak, and A. Ivankovic, OpenFOAM Finite Volume Solver for Fluid-Solid Interaction, Transactions of FAMENA, vol. 42, pp. 1–31, 2018.10.21278/TOF.42301 Search in Google Scholar

47. U. Küttler and W. Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computational Mechanics, vol. 43, pp. 61–72, 2008.10.1007/s00466-008-0255-5 Search in Google Scholar

48. Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, and G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1, pp. 173–201, 2007.10.1016/j.cma.2007.07.016 Search in Google Scholar

49. M. Girfoglio, A. Quaini, and G. Rozza, A POD-Galerkin reduced order model for a LES filtering approach, Journal of Computational Physics, vol. 436, p. 110260, 2021. Search in Google Scholar

50. R. I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of Computational Physics, vol. 62, no. 1, pp. 40–65, 1986.10.1016/0021-9991(86)90099-9 Search in Google Scholar

51. S. V. Patankar and D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol. 15, no. 10, pp. 1787–1806, 1972. Search in Google Scholar

52. J. P. Van Doormaal and G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Numerical Heat Transfer, vol. 7, no. 2, pp. 147–163, 1984.10.1080/01495728408961817 Search in Google Scholar

53. M. Luhar and H. Nepf, Flow-induced reconfiguration of buoyant and flexible aquatic vegetation, Limnology and Oceanography, vol. 56, pp. 2003–2017, 2011. Search in Google Scholar

54. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Doklady Akademii Nauk SSSR, vol. 30, pp. 301–305, 1941. Search in Google Scholar

55. A. N. Kolmogorov, Dissipation of energy in isotropic turbulence, Doklady Akademii Nauk SSSR, vol. 32, pp. 19–21, 1941. Search in Google Scholar

56. P. Lax and B. Wendroff, System of conservation laws, Communications on Pure and Applied Mathematics, vol. 13, pp. 217–237, 1960.10.1002/cpa.3160130205 Search in Google Scholar

57. W. Meng, Analysis on dynamic response of a tension-leg platform riser system, Master’s thesis, Rice University, 2018. Search in Google Scholar

eISSN:
2038-0909
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics