À propos de cet article

Citez

1. Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes, Physical review letters, vol. 115, no. 19, p. 195503, 2015.10.1103/PhysRevLett.115.195503Search in Google Scholar

2. S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Physical review letters, vol. 108, no. 21, p. 214303, 2012.10.1103/PhysRevLett.108.214303Search in Google Scholar

3. M. Maldovan, Sound and heat revolutions in phononics, Nature, vol. 503, no. 7475, pp. 209-217, 2013.10.1038/nature12608Search in Google Scholar

4. N. Li, J. Ren, L. Wang, G. Zhang, P. Hãnggi, and B. Li, Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond, Reviews of Modern Physics, vol. 84, no. 3, p. 1045, 2012.10.1103/RevModPhys.84.1045Search in Google Scholar

5. C. Dames, Solid-state thermal rectification with existing bulk materials, Journal of Heat Transfer, vol. 131, no. 6, p. 061301, 2009.10.1115/1.3089552Search in Google Scholar

6. D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Thermal rectification in bulk materials with asymmetric shape, Appl. Phys. Lett., vol. 98, 2011.10.1063/1.3559615Search in Google Scholar

7. W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Applied Physics Letters, vol. 95, no. 17, p. 171905, 2009.10.1063/1.3253712Search in Google Scholar

8. N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Applied Physics Letters, vol. 95, no. 3, p. 033107, 2009.10.1063/1.3183587Search in Google Scholar

9. M. Criado-Sancho, L. F. D. Castillo, J. Casas-Vázquez, and D. Jou, Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device, Physics Letters A, vol. 376, no. 19, pp. 1641-1644, 2012.10.1016/j.physleta.2012.03.045Search in Google Scholar

10. M. Criado-Sancho, F. X. Alvarez, and D. Jou, Thermal rectification in inhomogeneous nanoporous Si devices, Journal of Applied Physics, vol. 114, no. 5, p. 053512, 2013.10.1063/1.4816685Search in Google Scholar

11. E.González-Noya, D. Srivastava, and M. Menon, Heat-pulse rectification in carbon nanotube y junctions, Physical Review B, vol. 79, no. 11, p. 115432, 2009.10.1103/PhysRevB.79.115432Search in Google Scholar

12. C. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science, vol. 314, no. 5802, pp. 1121-1124, 2006.10.1126/science.1132898Search in Google Scholar

13. B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Physical review letters, vol. 97, no. 12, p. 124302, 2006.10.1103/PhysRevLett.97.124302Search in Google Scholar

14. H. Machrafi, G. Lebon, and D. Jou, Thermal rectifier efficiency of various bulk-nanoporous silicon devices, International Journal of Heat and Mass Transfer, vol. 97, pp. 603-610, 2016.10.1016/j.ijheatmasstransfer.2016.02.048Search in Google Scholar

15. R. Scheibner, M. König, D. Reuter, A. Wieck, C. Gould, H. Buhmann, and L. Molenkamp, Quantum dot as thermal rectifier, New Journal of Physics, vol. 10, no. 8, p. 083016, 2008.10.1088/1367-2630/10/8/083016Search in Google Scholar

16. Y. C. Tseng, D. M. T. Kuo, Y. C. Chang, and L. Yan-Ting, Heat rectification effect of serially coupled quantum dots, Applied Physics Letters, vol. 103, no. 5, p. 053108, 2013.10.1063/1.4817258Search in Google Scholar

17. C. F. Barenghi, L. Skrbek, and K. Sreenivasan, Introduction to quantum turbulence, Proc. NAt. Acad. Sci., PNAS-USA, vol. 111(1), pp. 4647-4652, 2014.10.1073/pnas.1400033111Search in Google Scholar

18. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cambridge University Press, 1991.Search in Google Scholar

19. C. F. Barenghi, R. J. Donnelly, and W. F.Vinen, Quantized Vortex Dynamics and Superuid Turbulence. Berlin: Springer, 2001.10.1007/3-540-45542-6Search in Google Scholar

20. S. K. Nemirovskii, Quantum turbulence: Theoretical and numerical problems, Physics Reports, vol. 524, no. 3, pp. 85-202, 2013.10.1016/j.physrep.2012.10.005Search in Google Scholar

21. M. Sciacca, D. Jou, and M. S. Mongiovì, Effective thermal conductivity of helium II: from Landau to Gorter-Mellink regimes, Zeitschrift für angewandte Mathematik und Physik, vol. 66, no. 4, pp. 1835-1851, 2015.10.1007/s00033-014-0479-5Search in Google Scholar

22. M. S. Mongiovì and D. Jou, Thermodynamical derivation of a hydrodynamical model of inhomogeneous superuid turbulence, Physical Review B, vol. 75, no. 2, p. 024507, 2007.10.1103/PhysRevB.75.024507Search in Google Scholar

23. D. Jou, G. Lebon, and M. S. Mongiovì, Second sound, superuid turbulence, and intermittent effects in liquid helium II , Physical Review B, vol. 66, pp. 224509-224517, 2002.10.1103/PhysRevB.66.224509Search in Google Scholar

24. M. Mongiovì, D. Jou, and M. Sciacca, Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superuid helium, Physics Report, vol. 726, pp. 1-71, 2018.10.1016/j.physrep.2017.10.004Search in Google Scholar

25. L. Saluto, M. S. Mongiovì, and D. Jou, Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component, Zeitschrift für angewandte Mathematik und Physik, vol. 65, pp. 531-548, 2014.10.1007/s00033-013-0372-7Search in Google Scholar

26. M. S. Mongiovì, Extended irreversible thermodynamics of liquid helium II, Physical Review B, vol. 48, no. 9, pp. 6276-6283, 1993.10.1103/PhysRevB.48.6276Search in Google Scholar

27. M. S. Mongiovì, Extended irreversible thermodynamics of liquid helium II: boundary condition and propagation of fourth sound, Physica A: Statistical Mechanics and its Applications, vol. 292, no. 1, pp. 55{74, 2001.10.1016/S0378-4371(00)00537-9Search in Google Scholar

28. D. Jou, J. Casas-Vázquez, and M. Criado-Sancho, Thermodynamics of Fluids Under Flow. Berlin: Springer, second ed., 2011.10.1007/978-94-007-0199-1Search in Google Scholar

29. L. Saluto, D. Jou, and M. S. Mongiovì, Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence, Physica A: Statistical Mechanics and its Applications, vol. 406, pp. 272-280, 2014.10.1016/j.physa.2014.03.062Search in Google Scholar

30. L. Saluto, D. Jou, and M. S. Mongiovi, Vortex diffusion and vortex-line hysteresis in radial quantum turbulence, Physica B: Condensed Matter, vol. 440, pp. 99-103, 2014.10.1016/j.physb.2014.01.041Search in Google Scholar

31. M. Sciacca, M. Mongiovi, and D. Jou, Alternative vinen equation and its extension to rotating counterflow, superfluid turbulence, Physica B, vol. 403, pp. 2215-2224, 2008.10.1016/j.physb.2007.12.001Search in Google Scholar

32. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in thermal counterflow, Phys. Rev. B, vol. 27, pp. 2788-2799, 1983.10.1103/PhysRevB.27.2788Search in Google Scholar

33. S. K. Nemirovskii, Diffusion of inhomogeneous vortex tangle and decay of superuid turbulence, Phys. Rev. B, vol. 81, pp. 64512-64521, 2010.10.1103/PhysRevB.81.064512Search in Google Scholar

34. G. W. Stagg, N. G. Parker, and C. F. Barenghi, Superfluid boundary layer, Phys. Rev. Lett., vol. 118, p. 135301, Mar 2017.10.1103/PhysRevLett.118.135301Search in Google Scholar

35. M. L. Mantia, Particle dynamics in wall-bounded thermal counterflow of superfluid helium, Physics of Fluids, vol. 29, no. 6, p. 065102, 2017.10.1063/1.4984913Search in Google Scholar

36. W. Vinen, Mutual friction in a heat current in liquid helium II. III. theory of the mutual friction, Proceedings of the Royal Society, London, vol. A240, pp. 493-515, 1957.10.1098/rspa.1957.0191Search in Google Scholar

37. L. Saluto and M. S. Mongiovi, Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels, Communications in Applied and Industrial Mathematics, vol. 7, no. 2, pp. 130-149, 2016.10.1515/caim-2016-0010Search in Google Scholar

38. I. Carlomagno, V. Cimmelli, and D. Jou, Computational analysis of heat rectification in compositiongraded systems: From macro-to-nanoscale, Physica B: Condensed Matter, vol. 481, pp. 244-251, 2016.10.1016/j.physb.2015.11.012Search in Google Scholar

eISSN:
2038-0909
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics