Accès libre

Comparative, Analytical and Virtual Study of the Flow Parameters of the Bearing Cement-Air Mixture, in a Pipeline Route

À propos de cet article

Citez

Gao, Z.-W.; Liu, Z.-X.; Wei, Y.-D.; Li, C.-X.; Wang, S.-H.; Qi, X.-Y.; Huang, W. Numerical analysis on the influence of vortex motion in a reverse Stairmand cyclone separator by using LES model. Pet. Sci. 2022, 19, 848–860. Search in Google Scholar

Chen, L.; Ma, H.; Sun, Z.; Ma, G.; Li, P.; Li, C.; Cong, X. Effect of inlet periodic velocity on the performance of standard cyclone separators. Powder Technol. 2022, 402, 117347. Search in Google Scholar

Lim, J.-H.; Yook, S.-J. Development of a high-volume ambient aerosol sampling inlet with an adjustable cutoff size and its performance evaluation using road dust. Environ. Res. 2022, 204, 112302. Search in Google Scholar

Vegini, A.A., H.F. Meier, J.J. Iess and M. Mori. 2008. Computational fluid dynamics (CFD) analysis of cyclone separators connected in series. Ind. Eng. Chem. Res.47:192–200. Search in Google Scholar

Smith, D.B. 2010. Cyclonic vacuum cleaner. U.S. Patent No.7,655,058. Search in Google Scholar

Safikhani, H.; Zamani, J.; Musa, M. Numerical study of flow field in new design cyclone separators with one, two and three tangential inlets. Adv. Powder Technol. 2018, 29, 611–622. Search in Google Scholar

Wang, S.; Li, H.; Wang, R.; Wang, X.; Tian, R.; Sun, Q. Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM. Adv. Powder Technol. 2019, 30, 227–239. Search in Google Scholar

Safikhani, H.; Mehrabian, P. Numerical study of flow field in new cyclone separators. Adv. Powder Technol. 2016, 27, 379–387. Search in Google Scholar

Mazyan, W.I.; Ahmadi, A.; Brinkerhoff, J.; Ahmed, H.; Hoorfar, M. Enhancement of cyclone solid particle separation performance based on geometrical modification: Numerical analysis. Sep. Purif. Technol. 2018, 191, 276–285. Search in Google Scholar

Misiulia, D.; Andersson, A.G.; Lundström, T.S. Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet. Powder Technol. 2017, 305, 48–55. Search in Google Scholar

Wei, Q.; Sun, G.; Gao, C. Numerical analysis of axial gas flow in cyclone separators with different vortex finder diameters and inlet dimensions. Powder Technol. 2020, 369, 321–333. Search in Google Scholar

Alshetty, D.; Nagendra, S.M.S. Impact of vehicular movement on road dust resuspension and spatiotemporal distribution of particulate matter during construction activities. Atmos. Pollut. Res. 2022, 13, 101256. Search in Google Scholar

Kumar, V.; Jha, K. Effects of Mass-Loading on Performance of the Cyclone Separators. In Applications of Computational Fluid Dynamics Simulation and Modeling; IntechOpen: London, UK, 2022. Search in Google Scholar

Kanojiya, M.T.; Mandavgade, N.; Kalbande, V.; Padole, C. Design and fabrication of cyclone dust collector for industrial Application. Mater. Today Proc. 2022, 49, 378–382. Search in Google Scholar

Jafarnezhad, A.; Salarian, H.; Kheradmand, S.; Khaleghinia, J. Performance improvement of a cyclone separator using different shapes of vortex finder under high-temperature operating condition. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 81. Search in Google Scholar

Kozołub, P.; Klimanek, A.; Białecki, R.A.; Adamczyk, W.P. Numerical simulation of a dense solid particle flow inside a cyclone separator using the hybrid Euler– Lagrange approach. Particuology 2017, 31, 170–180. Search in Google Scholar

https://www.researchgate.net/publication/259101451_Dust_cyclone_technology Search in Google Scholar