Accès libre

Novel Developments in Advanced Materials Fields: Porous and Non-Porous Biomaterials Used in Regenerative Medicine and Tissue Engineering

À propos de cet article

Citez

Han, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., ... & Li, B. (2020). Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Frontiers in bioengineering and biotechnology, 8, 83. doi: 10.3389/fbioe.2020.00083 Open DOISearch in Google Scholar

Farag, M. M. (2023). Recent trends on biomaterials for tissue regeneration applications. Journal of Materials Science, 1-32, DOI 10.1007/s10853-022-08102-x Open DOISearch in Google Scholar

Adel, I. M., ElMeligy, M. F., & Elkasabgy, N. A. (2022). Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics, 14(2), 306. https://doi.org/10.3390/pharmaceutics14020306 Search in Google Scholar

Wang, H., Su, K. X., Su, L. Z., Liang, P. P., Ji, P., and Wang, C. (2019). Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater. Sci. Eng. C-Mater. Biol. Appl. 104:109908. doi: 10.1016/j.msec.2019.109908 Open DOISearch in Google Scholar

Tsakiris, V., Tardei, C., & Clicinschi, F. M. (2021). Biodegradable Mg alloys for orthopedic implants–A review. Journal of Magnesium and Alloys, 9(6), 1884-1905, https://doi.org/10.1016/j.jma.2021.06.024 Search in Google Scholar

An, Y., Wei, W., Jing, H., Ming, L., Liu, S., and Jin, Y. (2015). Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Sci. Rep. 5:17036. doi: 10.1038/srep17036 Open DOISearch in Google Scholar

Ye, K., Kuang, H., You, Z., Morsi, Y., and Mo, X. (2019). Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics 11:182.doi: 10.3390/pharmaceutics11040182 Open DOISearch in Google Scholar

Picciolo, G., Peditto, M., Irrera, N., Pallio, G., Altavilla, D., Vaccaro, M., ... & Oteri, G. (2020). Preclinical and Clinical Applications of Biomaterials in the Enhancement of Wound Healing in Oral Surgery: An Overview of the Available Reviews. Pharmaceutics, 12(11), 1018, DOI 10.3390/pharmaceutics12111018 Open DOISearch in Google Scholar

Cho, K. H., Uthaman, S., Park, I. K., & Cho, C. S. (2018). Injectable biomaterials in plastic and reconstructive surgery: a review of the current status. Tissue engineering and regenerative medicine, 15, 559-574. DOI 10.1007/s13770-018-0158-2 Open DOISearch in Google Scholar

Yan, Y. F., Cheng, B. C., Chen, K. Z., Cui, W. G., Qi, J., Li, X. M., et al. (2019). Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv. Healthc. Mater. 8:e1801043. doi: 10.1002/adhm.201801043 Open DOISearch in Google Scholar

Han, F., Hu, Y., Li, J., Gong, J., Guo, Q., Zhu, C., et al. (2019). In situ silk fibroinmediated crystal formation of octacalcium phosphate and its application in bone repair. Mater. Sci. Eng. C 95, 1–10. doi: 10.1016/j.msec.2018.10.041 Open DOISearch in Google Scholar

Zhang, X. Z., Zu, H. Y., Zhao, D. W., Yang, K., Tian, S. M., Yu, X. M., et al. (2017) Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater. 63, 369–382. doi: 10.1016/j.actbio.2017.08.051 Open DOISearch in Google Scholar

Wang, F. Q., Wang, L., Feng, Y. F., Yang, X. J., Ma, Z. S., Shi, L., et al. (2018). Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Sci. Rep. 8:8927.doi: 10.1038/s41598-018-27182-x Open DOISearch in Google Scholar

Gao, F., Xu, Z. Y., Liang, Q. F., Liu, B., Li, H. F., Wu, Y. H., et al. (2018). Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv. Funct. Mater. 28, 13. doi: 10.1002/adfm.201706644 Open DOISearch in Google Scholar

M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 19 (1998) p 1621–1639, https://doi.org/10.1016/S0142-9612(97)00146-4 Search in Google Scholar

M. Niculescu, D. Laptoiu, F. Miculescu, I.V. Antoniac, (2015) Metal Allergy and other Adverse Reactions in Patients with Total Hip Replacement, Advanced Materials Research 1114 283-287. https://doi.org/10.4028/www.scientific.net/AMR.1114.283 Search in Google Scholar

Ganbold, B., Heo, S. J., Koak, J. Y., Kim, S. K., and Cho, J. (2019). Human stem cell responses and surface characteristics of 3D printing Co-Cr dental material. Materials 12:E3419. doi: 10.3390/ma12203419 Open DOISearch in Google Scholar

Sun, Y. S., Huang, C. Y., Chen, C. S., Chang, J. H., Hou, W. T., Li, S. J., et al. (2018). Bone cell responses to a low elastic modulus titanium alloy surface immobilized with the natural cross-linker genipin. Surf. Coat. Technol. 350, 918–924. doi: 10.1016/j.surfcoat.2018.03.069 Open DOISearch in Google Scholar

Ye, K. Q., Liu, D. H., Kuang, H. Z., Cai, J. Y., Chen, W. M., Sun, B. B., et al. (2019). Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J. Colloid Interface Sci. 534, 625–636. doi: 10.1016/j.jcis.2018.09.071 Open DOISearch in Google Scholar

Popescu, I. N., Vidu, R., & Bratu, V. (2017). Porous Metallic Biomaterials Processing (Review) Part 1: Compaction, Sintering Behavior, Properties And Medical Applications. Scientific Bulletin of'Valahia'University. Materials & Mechanics, 15(13). Search in Google Scholar

Cotrut, C. M., Ionescu, I. C., Ungureanu, E., Berbecaru, A., Zamfir, R. I., Vladescu, A., & Vranceanu, D. M. (2021). Evaluation of surface modification techniques on the ability of apatite formation and corrosion behavior in synthetic body fluid: An in vitro study. Surfaces and Interfaces, 22, 100866. https://doi.org/10.1016/j.surfin.2020.100866 Search in Google Scholar

Hirsch, M., Lucherini, L., Zhao, R., Saracho, A. C., & Amstad, E. (2023). 3D printing of living structural biocomposites. Materials Today, 62, 21-32. https://doi.org/10.1016/j.mattod.2023.02.001 Search in Google Scholar

Avram, D., Ungureanu, D. N., Ionita, I., Popescu, E. C., & Avram, C. C. (2023, March). Evaluation of the antibacterial activity of some doped phosphocalcic glasses with silver and copper. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI (Vol. 12493, pp. 29-34). SPIE. https://doi.org/10.1117/12.2642095 Search in Google Scholar

Cotrut, C. M., Ungureanu, E., Ionescu, I. C., Zamfir, R. I., Kiss, A. E., Parau, A. C., ... & Saceleanu, A. (2022). Influence of Magnesium Content on the Physico-Chemical Properties of Hydroxyapatite Electrochemically Deposited on a Nanostructured Titanium Surface. Coatings, 12(8), 109, https://doi.org/10.3390/coatings12081097 . Search in Google Scholar

Sánchez-Salcedo, S., García, A., González-Jiménez, A., & Vallet-Regí, M. (2023). Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomaterialia, 155, 654-666. https://doi.org/10.1016/j.actbio.2022.10.045 Search in Google Scholar

Xie, P., Du, J., Li, Y., Wu, J., He, H., Jiang, X., et al. (2019). Robust hierarchical porous MBG scaffolds with promoted biomineralization ability. Colloids Surf. B Biointerfaces 178, 22–31. doi: 10.1016/j.colsurfb.2019.02.042 Search in Google Scholar

Yang, C., Wang, X., Ma, B., Zhu, H., Huan, Z., Ma, N., et al. (2017). 3D-Printed bioactive Ca3SiO5 bone cement scaffolds with nano surface structure for bone regeneration. ACS Appl. Mater. Interfaces 9, 5757–5767. doi: 10.1021/acsami.6b14297 Open DOISearch in Google Scholar

Bunpetch, V., Zhang, X., Li, T., Lin, J., Maswikiti, E. P., Wu, Y., et al. (2019). Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials 192, 323–333. doi: 10.1016/j.biomaterials.2018.11.025 Open DOISearch in Google Scholar

Chen, Y., Wang, J., Zhu, X. D., Tang, Z. R., Yang, X., Tan, Y. F., et al. (2015).Enhanced effect of beta-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater. 11, 435–448. doi: 10.1016/j.actbio.2014.09.028 Open DOISearch in Google Scholar

Fujiki, M., Abe, K., Hayakawa, T., Yamamoto, T., Torii, M., Iohara, K., et al. (2019). Antimicrobial activity of protamine-loaded calcium phosphates against oral bacteria. Materials 12:E2816. doi: 10.3390/ma12172816 Open DOISearch in Google Scholar

Hiromoto, S., and Yamazaki, T. (2017). Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast. Sci.Technol. Adv. Mater. 18, 96–109. doi: 10.1080/14686996.2016.1266238 Open DOISearch in Google Scholar

Horiuchi, S., Hiasa, M., Yasue, A., Sekine, K., Hamada, K., Asaoka, K., et al. (2014). Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement. J. Mech. Behav. Biomed. Mater. 29, 151–160.doi: 10.1016/j.jmbbm.2013.09.005 Open DOISearch in Google Scholar

Liu, F., Chen, Q. H., Liu, C., Ao, Q., Tian, X. H., Fan, J., et al. (2018).Natural polymers for organ 3D bioprinting. Polymers 10:26. doi: 10.3390/polym10111278 Open DOISearch in Google Scholar

Zhang, Y. B., Liu, X. C., Zeng, L. D., Zhang, J., Zuo, J. L., Zou, J., et al. (2019).Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv. Funct.Mater 29:1903279. doi: 10.1002/adfm.201903279 Open DOISearch in Google Scholar

Kalirajan, C., Dukle, A., Nathanael, A. J., Oh, T. H., & Manivasagam, G. (2021). A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers, 13(17), 3015., https://doi.org/10.3390/polym13173015 Search in Google Scholar

Yuan, Z., Tao, B. L., He, Y., Liu, J., Lin, C. C., Shen, X. K., et al. (2019). Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 217:119290. doi: 10.1016/j.biomaterials.2019.119290 Open DOISearch in Google Scholar

Yuan, Z., Tao, B. L., He, Y., Mu, C. Y., Liu, G. H., Zhang, J. X., et al. (2019). Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy. Biomaterials 223:119479. doi: 10.1016/j.biomaterials.2019.119479 Open DOISearch in Google Scholar

Alvarez, K., and Nakajima, H. (2009). Metallic scaffolds for bone regeneration. Materials 2, 790–832. doi: 10.3390/ma2030790 Open DOISearch in Google Scholar

Lin, Z., Zhao, Y., Chu, P. K., Wang, L., Pan, H., Zheng, Y., et al. (2019). A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 219:119372. doi: 10.1016/j.biomaterials.2019.119372 Open DOISearch in Google Scholar

Morinaga, K., Sasaki, H., Park, S., Hokugo, A., Okawa, H., Tahara, Y., et al. (2019). Neuronal PAS domain 2 (Npas2) facilitated osseointegration of titanium implant with rough surface through a neuroskeletal mechanism. Biomaterials 192, 62–74. doi: 10.1016/j.biomaterials.2018.11.003 Open DOISearch in Google Scholar

Okuzu, Y., Fujibayashi, S., Yamaguchi, S., Yamamoto, K., Shimizu, T., Sono, T., et al. (2017). Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model. Acta Biomater.63, 383–392. doi: 10.1016/j.actbio.2017.09.019 Open DOISearch in Google Scholar

Arifvianto, B., & Zhou, J. (2014). Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials, 7(5), 3588-3622.doi: 10.3390/ma7053588 Open DOISearch in Google Scholar

Chen, Y., Kawazoe, N., and Chen, G. (2018). Preparation of dexamethasoneloaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater. 67, 341–353. doi: 10.1016/j.actbio.2017.12.004 Open DOISearch in Google Scholar

Kang, Z., Zhang, X., Chen, Y., Akram, M. Y., Nie, J., and Zhu, X. (2017).Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater. Sci. Eng C 70, 1125–1131. doi: 10.1016/j.msec.2016.04.008 Open DOISearch in Google Scholar

Liu, H. H., Yang, L., Zhang, E. C., Zhang, R., Cai, D. D., Zhu, S. A., et al. (2017).Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction. Acta Biomater. 56, 129–140. doi: 10.1016/j.actbio.2017.05.027 Open DOISearch in Google Scholar

Yuan, L., Li, B., Yang, J., Ni, Y., Teng, Y., Guo, L., et al. (2016). Effects of composition and mechanical property of injectable collagen I/II composite ydrogels on chondrocyte behaviors. Tissue Eng. Part A 22, 899–906. doi: 10.1089/ten.TEA.2015.0513 Open DOISearch in Google Scholar

Sivaraj, D., and Vijayalakshmi, K. (2019). Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application. Ultrason. Sonochem. 59, 104730. doi: 10.1016/j.ultsonch.2019.104730 Open DOISearch in Google Scholar

Vyavahare, S., Mahesh, V., Mahesh, V., & Harursampath, D. (2022). Additively manufactured meta-biomaterials: A state-of-the-art review. Composite Structures, 116491, DOI 10.1016/j.compstruct.2022.116491 Open DOISearch in Google Scholar

Igami, T., Nakamura, Y., Oda, M., Tanaka, H., Nojiri, M., Ebata, T., et al. (2018).Application of three-dimensional print in minor hepatectomy following liver partition between anterior and posterior sectors. ANZ J. Surg. 88, 882–885.doi: 10.1111/ans.14331 Open DOISearch in Google Scholar

Lee, S. H., and Jun, B. H. (2019). Advances in dynamic microphysiological organon- a-chip: design principle and its biomedical application. J. Ind. Eng. Chem. 71, 65–77. doi: 10.1016/j.jiec.2018.11.041 Open DOISearch in Google Scholar

Yang, W. E., and Huang, H. H. (2019). Multiform TiO2 nano-network enhances biological response to titanium surface for dental implant applications. Appl. Surf. Sci. 471, 1041–1052. doi: 10.1016/j.apsusc.2018.11.244 Open DOISearch in Google Scholar

Mour, M., Das, D., Winkler, T., Hoenig, E., Mielke, G., Morlock, M. M., & Schilling, A. F. (2010). Advances in porous biomaterials for dental and orthopaedic applications. Materials, 3(5), 2947-2974, https://doi.org/10.3390/ma3052947 Search in Google Scholar

Md Yusop, A. H., Al Sakkaf, A., & Nur, H. (2022). Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(1), 18-44, https://doi.org/10.1002/jbm.b.34893 Search in Google Scholar

Zhang, C., Li, X. M., Liu, S. Q., Liu, H., Yu, L. J., & Liu, L. (2019). 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications. Journal of Alloys and Compounds, 790, 963-973, https://doi.org/10.1016/j.jallcom.2019.03.275 Search in Google Scholar

Ishfaq, K., Rehman, M., Khan, A. R., & Wang, Y. (2022). A review on the performance characteristics, applications, challenges and possible solutions in electron beam melted Ti-based orthopaedic and orthodontic implants. Rapid Prototyping Journal, 28(3), 525-545. DOI 10.1108/RPJ-03-2021-0060 Open DOISearch in Google Scholar

Yuan, L., Ding, S., & Wen, C. (2019). Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive materials, 4, 56-70, https://doi.org/10.1016/j.bioactmat.2018.12.003 Search in Google Scholar

Dehghan-Manshadi, A., Yu, P., Dargusch, M., StJohn, D., & Qian, M. (2020). Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technology, 364,189-204, DOI 10.1016/j.powtec.2020.01.073 Open DOISearch in Google Scholar

Im, H., Kim, S. H., Kim, S. H., and Jung, Y. (2018). Skin regeneration with a scaffold of predefined shape and bioactive peptide hydrogels. Tissue Eng. Part A 24, 1518–1530. doi: 10.1089/ten.tea.2017.0489 Open DOISearch in Google Scholar

Kim, B. S., Kwon, Y. W., Kong, J. S., Park, G. T., Gao, G., Han, W., et al. (2018). 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 168, 38–53. doi: 10.1016/j.biomaterials.2018.03.040 Open DOISearch in Google Scholar

Wang, R., Wang, Y., Yao, B., Hu, T., Li, Z., Huang, S., et al. (2019). Beyond 2D: 3D bioprinting for skin regeneration. Int. Wound J. 16, 134–138. doi: 10.1111/iwj.13003 Open DOISearch in Google Scholar

Gao, Q., Liu, Z., Lin, Z., Qiu, J., Liu, Y., Liu, A., et al. (2017). 3D Bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater. Sci. Eng. 3, 399–408. doi: 10.1021/acsbiomaterials.6b00643 Open DOISearch in Google Scholar

Yang, H., Wei, L., Liu, C., Zhong, W. Y., Li, B., Chen, Y. C., et al. (2019). Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomater. 88, 540–553. doi: 10.1016/j.actbio.2019.02.024 Open DOISearch in Google Scholar

Zhang, X., Wang, C., Liao, M., Dai, L., Tang, Y., Zhang, H., et al. (2019). Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr. Polym. 213, 27–38. doi: 10.1016/j.carbpol.2019.02.038 Open DOISearch in Google Scholar

Obada, D. O., Dauda, E. T., Abifarin, J. K., Dodoo-Arhin, D., & Bansod, N. D. (2020). Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature. Materials Chemistry and Physics, 239, 122099. https://doi.org/10.1016/j.matchemphys.2019.122099 Search in Google Scholar

Wang, L. H., Qiu, Y. Y., Lv, H. J., Si, Y., Liu, L. F., Zhang, Q., et al. (2019). 3D superelastic scaffolds constructed from flexible inorganic nanofibers with selffitting capability and tailorable gradient for bone regeneration. Adv. Funct. Mater. 29:1901407. doi: 10.1002/adfm.201901407 Open DOISearch in Google Scholar

Qian, Y. Z., Zhou, X. F., Zhang, F. M., Diekwisch, T. G. H., Luan, X. H., and Yang, J. X. (2019). Triple PLGA/PCL scaffold modification including silver impregnation, collagen coating, and electrospinning significantly improve biocompatibility, antimicrobial, and osteogenic for orofacial tissue regeneration. ACS Appl. Mater. Interfaces 11, 37381–37396. doi: 10.1021/acsami.9b07053 Open DOISearch in Google Scholar

Kim, S., Park, C., Cheon, K. H., Jung, H. D., Song, J., Kim, H. E., et al. (2018).Antibacterial and bioactive properties of stabilized silver on titanium with a nanostructured surface for dental applications. Appl. Surf. Sci. 451, 232–240.doi: 10.1016/j.apsusc.2018.04.270 Open DOISearch in Google Scholar

Lin, W. J., Qin, L., Qi, H. P., Zhang, D. Y., Zhang, G., Gao, R. L., et al. (2017). Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 54, 454–468. doi: 10.1016/j.actbio.2017.03.020 Open DOISearch in Google Scholar

Lee, S. H., Lee, K. G., Hwang, J. H., Cho, Y. S., Lee, K. S., Jeong, H. J., et al. (2019).Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model. Mater. Sci. Eng. C 98, 949–959. doi: 10.1016/j.msec.2019.01.050 Open DOISearch in Google Scholar

Li, Z., Huang, S., Liu, Y., Yao, B., Hu, T., Shi, H., et al. (2018). Tuning alginategelatin bioink properties by varying solvent and their impact on stem cell behavior. Sci. Rep. 8:8020. doi: 10.1038/s41598-018-26407-26403 Open DOISearch in Google Scholar

Lin, W. J., Qin, L., Qi, H. P., Zhang, D. Y., Zhang, G., Gao, R. L., et al. (2017). Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 54, 454–468. doi: 10.1016/j.actbio.2017.03.020 Open DOISearch in Google Scholar

Lin, Z., Wu, S., Liu, X., Qian, S., Chu, P. K., Zheng, Y., et al. (2019). A surfaceengineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomater. 99, 495–513. doi: 10.1016/j.actbio.2019.09.008 Open DOISearch in Google Scholar

Nakamura, T., Nakano, Y., Usami, H., Okamura, S., Wakabayashi, K., and Yatani, H. (2019). In vitro investigation of fracture load and aging resistance of highspeed sintered monolithic tooth-borne zirconia crowns. J. Prosthodont. Res S1883-1958, 30344–X. doi: 10.1016/j.jpor.2019.07.003 75. I. Antoniac, C. Sinescu & A.Antoniac (2016) Adhesion aspects in biomaterials and medical devices, Journal of Adhesion Science and Technology, 30(16) 1711-1715, https://doi.org/10.1080/01694243.2016.1170959 Open DOISearch in Google Scholar

Zhang, L. C., & Chen, L. Y. (2019). A review on biomedical titanium alloys: recent progress and prospect. Advanced engineering materials, 21(4), 1801215, DOI: 10.1002/adem.201801215 Open DOISearch in Google Scholar

Vladescu, A., Vranceanu, D. M., Kulesza, S., Ivanov, A. N., Bramowicz, M., Fedonnikov, A. S., ... & Cotrut, C. M. (2017). Influence of the electrolyte’s pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy. Scientific reports, 7(1), 16819, https://doi.org/10.1038/s41598-017-16985-z Search in Google Scholar

Piron, A., Anghelina, F. V., Popa, C., & Despa, V. (2020, December). The study of the mechanism interaction between sparks electric discharges and a AISI 316L biocompatible metallic samples. In IOP Conference Series: Materials Science and Engineering (Vol. 997, No. 1, p. 012027). IOP Publishing, DOI 10.1088/1757-899X/997/1/012027 Open DOISearch in Google Scholar

Anghelina, F. V., Ungureanu, D. N., Bratu, V., Popescu, I. N., & Rusanescu, C. O. (2013). Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L. Applied Surface Science, 285, 65-71. Search in Google Scholar

Longhi, M., Casagrande, R. B., Kunst, S. R., Santos, V. D., & Ferreira, J. Z. (2019). Obtainment and Characterization of a Silicon alkoxides-based Coating Applied to a Substrate of Stainless Steel 316L for Use in Biomaterials. Materials Research, 22. https://doi.org/10.1590/1980-5373-MR-2018-0514 Search in Google Scholar

Wang, Y., Liu, Z., Zhou, Y., Yang, X., Tang, J., Liu, X.,... & Le, G. (2021). Microstructure and mechanical properties of TiN particles strengthened 316L steel prepared by laser melting deposition process. Materials Science and Engineering : A, 814, 141220. https://doi.org/10.1016/j.msea.2021.141220 Search in Google Scholar

Sathishkumar, S., Sridevi, C., Rajavel, R., & Karthikeyan, P. (2020). Smart flower like MgO/Tb, Eu-substituted hydroxyapatite dual layer coating on 316L SS for enhanced corrosion resistance, antibacterial activity and osteocompatibility. Journal of Science: Advanced Materials and Devices, 5(4), 545-553. https://doi.org/10.1016/j.jsamd.2020.09.007 Search in Google Scholar

Chakkravarthy, V., Manojkumar, P., Lakshmanan, M., Prasad, K. E., Dafale, R., Vadhana, V. C., & Narayan, R. L. (2023). Comparing Bio-Tribocorrosion of Selective Laser Melted Titanium-25% Niobium and Conventionally Manufactured Ti-6Al-4V in Inflammatory Conditions. Journal of Alloys and Compounds, 169852. Search in Google Scholar

de Lacerda Schickert, S., Jansen, J. A., Bronkhorst, E. M., van den Beucken, J. J., & Leeuwenburgh, S. C. (2020). Stabilizing dental implants with a fiber-reinforced calcium phosphate cement: an in vitro and in vivo study. Acta Biomaterialia, 110, 280-288. https://doi.org/10.1016/j.actbio.2020.03.026 Search in Google Scholar

Bohner, M. (2010). Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater, 20(1), 3-10 Search in Google Scholar

Poinescu, A. A., & Ion, R. M. (2018). 316L Stainless steel/hydroxyapatite composite materials for biomedical applications. Hydroxyapatite—advances in composite nanomaterials, biomedical applications and its technological facets. InTech, 137-155. DOI: 10.5772/intechopen.71490 Open DOISearch in Google Scholar

Mandakhbayar, N., El-Fiqi, A., Lee, J. H., and Kim, H. W. (2019). Evaluation of strontium-doped nanobioactive glass cement for dentin-pulp complex regeneration therapy. ACS Biomater. Sci. Eng. 5, 6117–6126. doi: 10.1021/acsbiomaterials.9b01018 Open DOISearch in Google Scholar

Chen, S. W., Kawazoe, N., and Chen, G. P. (2017). Biomimetic assembly of vascular endothelial Ccells and muscle cells in microgrooved collagen porous scaffolds. Tissue Eng. Part C Methods 23, 367–376. doi: 10.1089/ten.tec.2017.0088 Open DOISearch in Google Scholar

Chen, S., Zhang, Q., Nakamoto, T., Kawazoe, N., and Chen, G. (2015). Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Eng. Part C Methods 22, 189–198. doi: 10.1089/ten.tec.2015.0281 Open DOISearch in Google Scholar

Tra Thanh, N., Ho Hieu, M., Tran Minh Phuong, N., Do Bui, Thuan, T., Nguyen Thi, et al. (2018). Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater. Sci. Eng. C 91, 318–329. doi: 10.1016/j.msec.2018.05.039 Open DOISearch in Google Scholar

Shi, M., Zhang, H., Song, T., Liu, X. F., Gao, Y. F., Zhou, J. H., et al. (2019). Sustainable dual release of antibiotic and growth factor from pH-responsive uniform alginate composite microparticles to enhance wound healing. ACS applied materials & interfaces, 11(25), 22730-22744 Search in Google Scholar

He, X.; Dziak, R.; Mao, K.; Genco, R.; Swihart, M.; Li, C.; Yang, S. (2013) Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng. Part A, 19, 508–518 Search in Google Scholar

Gu, Y., Zhu, J., Xue, C., Li, Z., Ding, F., Yang, Y., et al. (2014). Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 35, 2253–2263. doi: 10.1016/j.biomaterials.2013.11.087 Open DOISearch in Google Scholar

Kanimozhi, K.; Khaleel Basha, S.; Sugantha Kumari, V. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C (2016), 61, 484–491. https://doi.org/10.1016/j.msec.2015.12.084 Search in Google Scholar

Preethi Soundarya, S.; Haritha Menon, A.; Viji Chandran, S.; Selvamurugan, N. (2018) Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int. J. Biol. Macromol., 119, 1228–1239. https://doi.org/10.1016/j.ijbiomac.2018.08.056 Search in Google Scholar

Murdock, M.H.; Badylak, S.F. (2017)Biomaterials-based in situ tissue engineering. Curr. Opin. Biomed. Eng. 1, 4–7. https://doi.org/10.1016/j.cobme.2017.01.001 Search in Google Scholar

Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. (2017) Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif. Cells Nanomed. Biotechnol. 45, 185–192. https://doi.org/10.3109/21691401.2016.1146731 Search in Google Scholar

Cai, Z., Gan, Y., Bao, C., Wu, W., Wang, X., Zhang, Z., et al. (2019). Photosensitive hydrogel creates favorable biologic niches to promotespinal cord injury repair.Adv. Healthc. Mater. 8:1900013. doi: 10.1002/adhm.201900013 Open DOISearch in Google Scholar

Parida, P., Behera, A., & Mishra, S. C. (2012). Classification of Biomaterials used in Medicine. http://hdl.handle.net/2080/1761 Search in Google Scholar

Davoodi, E., Montazerian, H., Mirhakimi, A. S., Zhianmanesh, M., Ibhadode, O., Shahabad, S. I., ... & Toyserkani, E. ( 2022). Additively manufactured metallic biomaterials. Bioactive Materials, 15, 214-249, https://doi.org/10.1016/j.bioactmat.2021.12.027 Search in Google Scholar

Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Sustainable biomaterials and their applications: A short review. Materials Today: Proceedings, 30, 274-282, https://doi.org/10.1016/j.matpr.2020.01.437 Search in Google Scholar

Sola, A.; Bertacchini, J.; D’Avella, D.; Anselmi, L.; Maraldi, T.; Marmiroli, S.; Messori, M. (2019). Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater. Sci. Eng. C, 96, 153–165. Search in Google Scholar

Salerno, A.; Oliviero, M.; di Maio, E.; Iannace, S.; Netti, P.A.( 2009) Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. J. Mater. Sci. Mater. Med. 20, 2043–2051. https://doi.org/10.1007/s10856-009-3767-4 Search in Google Scholar

Álvarez, I.; Gutiérrez, C.; Rodríguez, J.F.; de Lucas, A.; García, M.T. (2020) Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J. CO2 Util. 41, 101227. https://doi.org/10.1016/j.jcou.2020.101227 Search in Google Scholar

Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. (2021) Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609. https://doi.org/10.1002/adfm.202010609 Search in Google Scholar

Li, Y., Liao, C., and Tjong, C. S. (2019). Electrospun polyvinylidene fluoride-based fibrous scaffolds with piezoelectric characteristics for bone and neural tissue engineering. Nanomaterials 9, :E952. doi: 10.3390/nano9070952 Open DOISearch in Google Scholar

Ao, C., Niu, Y., Zhang, X., He, X., Zhang, W., and Lu, C. (2017). Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int. J. Biol. Macromol. 97, 568–573. doi: 10.1016/j.ijbiomac.2016.12.091 Open DOISearch in Google Scholar

Drupitha, M. P., Das, B., Parameswaran, R., Dhara, S., Nando, G. B., and Naskar, K. (2018). Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering. Mater. Today Commun. 16,264–273. doi: 10.1016/j.mtcomm.2018.06.013 Open DOISearch in Google Scholar

Liu, B., Yao, T. T., Ren, L. X., Zhao, Y. H., and Yuan, X. Y. (2018). Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes. Colloids Surf. B-Biointerfaces 172, 330–337. doi: 10.1016/j.colsurfb.2018.08.055 Open DOISearch in Google Scholar

Su, C. J., Tu, M. G., Wei, L. J., Hsu, T. T., Kao, C. T., Chen, T. H., et al. (2017).Calcium silicate/chitosan-coated electrospun poly (lactic acid) fibers for bone tissue engineering. Materials 10:501. doi: 10.3390/ma10050501 Open DOISearch in Google Scholar

Sun, X., Lang, Q., Zhang, H., Cheng, L., Zhang, Y., Pan, G., et al. (2017).Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration. Adv. Funct. Mater. 27:1604617. doi: 10.1002/adfm.201604617 Open DOISearch in Google Scholar

Lv, Y.; Wang, B.; Liu, G.; Tang, Y.; Lu, E.; Xie, K.; Lan, C.; Liu, J.; Qin, Z.; Wang, L. (2021) Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review. Front. Bioeng. Biotechnol. 9, 194. https://doi.org/10.3389/fbioe.2021.641130 Search in Google Scholar

Li, J.; Cui, X.; Hooper, G.J.; Lim, K.S.; Woodfield, T.B.F.( 2020) Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J. Mech. Behav. Biomed. Mater. 105, 103671. https://doi.org/10.1016/j.jmbbm.2020.103671 Search in Google Scholar

Ning, F.; Cong,W.; Hu, Y.; Wang, H. (2016) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J. Compos. Mater. 51, 451–462. https://doi.org/10.1177/0021998316646169 Search in Google Scholar

Ciobota, N. D., Gheorghe, G. I., & Despa, V. (2019). Additive Manufacturing As An Important Industry Player For The Next Decades. Scientific Bulletin of'Valahia'University. Materials & Mechanics, 17(16). DOI: 10.2478/bsmm-2019-0010 Open DOISearch in Google Scholar

Ballarre, J., & Ceré, S. M. (2022). Sol-gel coatings for protection and biofunctionalization of stainless-steel prosthetic intracorporeal devices in Latin-America. Journal of Sol-Gel Science and Technology, 102(1), 96-104. https://doi.org/10.1007/s10971-021-05658-z Search in Google Scholar

Poinescu, A. A., Radulescu, C., Vasile, B. S., & Ionita, I. (2014). Research regarding sol-gel hydroxyapatite coating on 316L stainless steel. Revista de Chimie, 65(10), 1245-1248. Search in Google Scholar

Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. (2021) Review— influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J. Solid State Sci. Technol. 10, 23002. DOI 10.1149/2162-8777/abe095 Open DOISearch in Google Scholar

Zhang, J.; Zhou, J.; Huang, X.;Wang, L.; Liu, G.; Cheng, J.( 2020) In situ preparation of hierarchically porous _-tricalcium phosphate bioceramic scaffolds by the sol-gel method combined with F127. Ceram. Int. 46, 6396–6405. https://doi.org/10.1016/j.ceramint.2019.11.117 Search in Google Scholar

Rodriguez-Contreras, A., Punset, M., Calero, J. A., Gil, F. J., Ruperez, E., & Manero, J. M. (2021). Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science & Technology, 76, 129-149. https://doi.org/10.1016/j.jmst.2020.11.005 Search in Google Scholar

Rupérez, E., Manero, J. M., Riccardi, K., Li, Y., Aparicio, C., & Gil, F. J. (2015). Development of tantalum scaffold for orthopedic applications produced by space-holder method. Materials & Design, 83, 112-119. https://doi.org/10.1016/j.matdes.2015.05.067 Search in Google Scholar

Ali, M., Pages, E., Ducom, A., Fontaine, A., and Guillemot, F. (2014). Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 6:045001. doi: 10.1088/1758-5082/6/4/045001 Open DOISearch in Google Scholar

Du, M., Chen, B., Meng, Q., Liu, S., Zheng, X., Zhang, C., et al. (2015). 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBDBMP2-collagen microfibers. Biofabrication 7:044104. doi: 10.1088/1758-5090/7/4/044104 Open DOISearch in Google Scholar

Ye, Z., Sang, T., Li, K., Fischer, N. G., Mutreja, I., Echeverría, C., ... & Aparicio, C. (2022). Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta biomaterialia, 140, 338-349. https://doi.org/10.1016/j.actbio.2021.12.008 Search in Google Scholar

Ye, Z., Zhu, X., Mutreja, I., Boda, S. K., Fischer, N. G., Zhang, A., ... & Aparicio, C. (2021). Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioactive Materials, 6(8), 2250-2260. https://doi.org/10.1016/j.bioactmat.2020.12.029 Search in Google Scholar

Choudhary, R., Venkatraman, S. K., Bulygina, I., Senatov, F., Kaloshkin, S., Anisimova, N., ... & Swamiappan, S. (2021). Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Materials Science and Engineering: C, 118, 111456. https://doi.org/10.1016/j.msec.2020.111456 Search in Google Scholar

Unal, S., Oktar, F. N., Mahirogullari, M., & Gunduz, O. (2021). Bone structure and formation: A new perspective. In Bioceramics (pp. 175-193). Elsevier. doi: 10.1016/B978-0-08-102999-2.00009-0 Open DOISearch in Google Scholar

Gao, G., Hubbell, K., Schilling, A. F., Dai, G., and Cui, X. (2017). “Bioprinting cartilage tissue from mesenchymal stem cells and PEG hydrogel,” in 3D cell Culture: Methods and Protocols, ed. Z. Koledova (New York, NY: Springer New York), 391–398. Search in Google Scholar

Costantini, M.; Barbetta, A. 6—Gas foaming technologies for 3D scaffold engineering. In Functional 3D Tissue Engineering Scaffolds;Deng, Y., Kuiper, J.B.T.-F., Eds.;Woodhead Publishing: Cambridge, UK, 2018; pp. 127–149, ISBN 978-0-08-100979-6 Search in Google Scholar

Fereshteh, Z. Freeze-Drying Technologies for 3D Scaffold Engineering. In Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications; Woodhead Publishing: Cambridge, UK, 2018; pp. 151–174, ISBN 9780081009796 Search in Google Scholar

Gao, G., Hubbell, K., Schilling, A. F., Dai, G., and Cui, X. (2017). “Bioprinting cartilage tissue from mesenchymal stem cells and PEG hydrogel,” in 3D cell Culture: Methods and Protocols, ed. Z. Koledova (New York, NY: Springer New York), 391–398 Search in Google Scholar