À propos de cet article

Citez

Andrew A.M., Spiking neuron models: single neurons, populations, plasticity, Kybernetes 32, 7-8 (2003). Search in Google Scholar

Benjamin B.V., Gao P., McQuinn E., Choudhary S., Chandrasekaran A.R., Bussat, J.M. et al., Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations, Proc. IEEE 102, 699-716 (2014). Search in Google Scholar

Bing Z., Meschede C., Röhrbein F., Huang K., Knoll A.C., A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks, Front. Neurorobot, 12-35 (2018). Search in Google Scholar

Burkitt A.N., A review of the integrate-and-fire neuron model: I. homogeneous synaptic input, Biol. Cybern. 95, 1-19 (2006). Search in Google Scholar

Cheung K., Schultz S.R., Luk W., Neuroflow: a general-purpose spiking neural network simulation platform using customizable processors, Front. Neurosci. 9-516 (2016). Search in Google Scholar

Cofer D., Cymbalyuk G., Reid J., Zhu Y., Heitler W.J., Edwards D.H., Animatlab: a 3d graphics environment for neuromechanical simulations, J. Neurosci. Methods 187, 280-288 (2010). Search in Google Scholar

Drubach, D., The Brain Explained. Upper Saddle River, NJ: Prentice Hall Health, 2000. Search in Google Scholar

Falotico E., Vannucci L., Ambrosano A., Albanese U., Ulbrich S., Vasquez Tieck J.C. et al., Connecting artificial brains to robots in a comprehensive simulation framework: the neurorobotics platform, Front. Neurorobot. 11-2 (2017). Search in Google Scholar

Furber S.B., Lester D.R., Plana L.A., Garside J.D., Painkras E., Temple S. et al., Overview of the spinnaker system architecture, IEEE Trans. Comput. 62, 2454-2467 (2013). Search in Google Scholar

Gabbiani F., Metzner W., Wessel R., Koch C., From stimulus encoding to feature extraction in weakly electric fish, Nature 384, 564 (1996). Search in Google Scholar

Gamez D., Fidjeland A.K., Lazdins E., iSpike: a spiking neural interface for the iCub robot, Bioinspir. Biomimetics, 7:025008 (2012). Search in Google Scholar

Gerstner W., Kempter R., van Hemmen J., Wagner H., Hebbian learning of pulse timing in the barn owl auditory system, in Pulsed Neural Networks, eds W. Maass and C. M. Bishop (Cambridge, MA: MIT Press), 353-377 (1999). Search in Google Scholar

Goodman D.F., Brette, R., The brian simulator, Front. Neurosci. 3:192 (2009). Search in Google Scholar

Gütig R., Sompolinsky H., The tempotron: a neuron that learns spike timing–based decisions, Nat. Neurosci. 9, 420-428 (2006). Search in Google Scholar

Han J., Moraga C., The influence of the sigmoid function parameters on the speed of backpropagation learning, in From Natural to Artificial Neural Computation (Berlin; Heidelberg), 195-201 (1995). Search in Google Scholar

Hastie T., Friedman J, Tibshirani R., Overview of supervised learning, in The Elements of Statistical Learning. Springer Series in Statistics (New York, NY: Springer) (2001). Search in Google Scholar

Hebb D.O., The Organization of Behavior: A Neuropsychological Approach, Mahwah, NJ: John Wiley & Sons (1949). Search in Google Scholar

Hecht-Nielsen R., Theory of the backpropagation neural network, Neural Networks for Perception, ed H. Wechsler (Academic Press), 65-93 (1992). Search in Google Scholar

Herculano-Houzel S., The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost, Proc. Natl. Acad. Sci. U.S.A. 109(Suppl. 1), 10661-10668 (2012). Search in Google Scholar

Hinton G.E., Sejnowski T.J., Unsupervised Learning: Foundations of Neural Computation. Cambridge, MA: MIT Press (1999). Search in Google Scholar

Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500-544 (1952). Search in Google Scholar

Hopfield J.J., Neural networks, and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci., U.S.A., 79, 2554-2558 (1982). Search in Google Scholar

Hulea M., A model of silicon neurons suitable for speech recognition, Control. Eng. Appl. Inform., 10(4), pp.32-41 (2008). Search in Google Scholar

Hulea M., The mathematical model of a biologically inspired electronic neuron for ease the design of spiking neural networks topology, 15th International Conference on System Theory, Control and Computing, Sinaia, Romania, pp. 1-6 (2011). Search in Google Scholar

Hulea M., Study of the long-term effect of STDP in areas of spiking neurons, 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 482-487 (2014). Search in Google Scholar

Hulea M., Bârleanu A., Electronic neural network for modelling the Pavlovian conditioning, 2017 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 186-190 (2017). Search in Google Scholar

Hulea M., Burlacu A., Caruntu C.F., Intelligent Motion Planning and Control for Robotic Joints Using Bio-Inspired Spiking Neural Networks, Int. J. HR., 16(04) (2019). Search in Google Scholar

Hulea M., Uleru G.I., Younus O.I., Rajbhandari S., Ghassemlooy Z., Neuromorphic Sensors with Visible Light Communications, 2022 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC), Tabriz, Iran, pp. 1-5 (2022). Search in Google Scholar

Izhikevich E.M., Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw., 15, 1063-1070 (2004). Search in Google Scholar

Koenig N., Howard A., Design and use paradigms for gazebo, an open-source multi-robot simulator, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Vol. 3, (Sendai), 2149-2154. Search in Google Scholar

Maass W., Networks of spiking neurons: the third generation of neural network models, Neural Netw. 10, 1659-1671 (1997). Search in Google Scholar

Maass W., On the relevance of time in neural computation and learning, Theor. Comput. Sci., 261, 157-178 (2001). Search in Google Scholar

McCulloch W.S., Pitts W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5, 115-133 (1943). Search in Google Scholar

Merolla P.A., Arthur J.V., Alvarez-Icaza R., Cassidy A. S., Sawada J., Akopyan F. et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345, 668-673 (2014). Search in Google Scholar

Mostafa H., Supervised learning based on temporal coding in spiking neural networks, IEEE Trans. Neural Netw. Learn. Syst. 29, 3227-3235 (2018). Search in Google Scholar

Osswald M., Ieng S.-H., Benosman R., Indiveri G., A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems, Sci. Rep. 7:40703 (2017). Search in Google Scholar

Pavlov I.P., Anrep G.V., Conditioned Reflexes, Mineola, NY: Courier Corporation (2003). Search in Google Scholar

Pfeiffer M., Pfeil T., Deep Learning with Spiking Neurons: Opportunities and Challenges. Front Neurosci., 12:774 (2018). Search in Google Scholar

Probst D., Maass W., Markram H., Gewaltig M.O., Liquid computing in a simplified model of cortical layer IV: learning to balance a ball, in Artificial Neural Networks and Machine Learning - ICANN 2012, Berlin, Heidelberg: Springer (2012). Search in Google Scholar

Ramón y Cajal S., Histologie du système nerveux de l'homme& des vertébrés, Paris, Maloine, 1909-11. Search in Google Scholar

Rohmer E., Singh S.P.N., Freese M., V-rep: a versatile and scalable robot simulation framework, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (Tokyo), 1321-1326 (2013). Search in Google Scholar

Russakovsky O., Deng J., Su H. et al., ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211-252 (2015). Search in Google Scholar

Silver D., Huang A., Maddison C.J., Guez A., Sifre, L., Van Den Driessche G. et al., Mastering the game of go with deep neural networks and tree search, Nature 529, 484-489 (2016). Search in Google Scholar

Thach W., On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav. Brain Sci. 19, 411-433 (1996). Search in Google Scholar

Thorpe S., Delorme A., Van Rullen R., Spike-based strategies for rapid processing, Neural Netw. 14, 715-725 (2001). Search in Google Scholar

Uleru G.I., Hulea M., Burlacu A., Bio-Inspired Control System for Fingers Actuated by Multiple SMA Actuators, Biomimetics, 7(2):62 (2022). Search in Google Scholar

Uleru G.I., Hulea M., Manta V.I., Using Hebbian Learning for Training Spiking Neural Networks to Control Fingers of Robotic Hands, Int. J. HR., 19(6) (2022). Search in Google Scholar

Uleru G.I., Hulea M., Barleanu A., The Influence of the Number of Spiking Neurons on Synaptic Plasticity, Biomimetics, 8(1):28 (2023). Search in Google Scholar

Vasilaki E., Frémaux N., Urbanczik R., Senn W., Gerstner W., Spike-based reinforcement learning in continuous state and action space: when policy gradient methods fail, PLoSComput. Biol., 5 (2009). Search in Google Scholar

Wade J.J., McDaid L.J., Santos J.A., Sayers H.M., Swat: a spiking neural network training algorithm for classification problems, IEEE Trans. Neural Netw. 21, 1817-1830 (2010). Search in Google Scholar