Accès libre

Organic Materials for Electronic and Thermoelectric Applications

À propos de cet article

Citez

[1] I. Dobryden, V. V. Korolkov, V. Lemaur, M. Waldrip, H.-I. Un, D. Simatos, L. J. Spalek, O. D. Jurchescu, Y. Olivier, P. M. Claesson, and D. Venkateshvaran, “Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor,” Nat. Commun., vol. 13, no. 1, p. 307610.1038/s41467-022-30801-x916305835654891 Search in Google Scholar

[2] N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, “Charge transport in disordered organic materials and its relevance to thin-film devices: A tutorial review,” Adv. Mater., vol. 21, no. 27, pp. 2741–2761, 7 200910.1002/adma.200803541 Search in Google Scholar

[3] A. M. Ballantyne, L. Chen, J. Dane, T. Hammant, F. M. Braun, M. Heeney, W. Duffy, I. McCulloch, D. D. C. Bradley, and J. Nelson, “The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer:fullerene solar cells,” Adv. Func. Mater., vol. 18, no. 16, pp. 2373–2380, 200810.1002/adfm.200800145 Search in Google Scholar

[4] J. Yan, E. Rezasoltani, M. Azzouzi, F. Eisner, and J. Nelson, “Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics,” Nat. Commun., vol. 12, no. 1, p. 364210.1038/s41467-021-23975-3820612734131145 Search in Google Scholar

[5] B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polymer International, vol. 55, no. 6, pp. 572–582, 200610.1002/pi.1974 Search in Google Scholar

[6] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, “Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene),” Nature Mater., vol. 10, no. 6, pp. 429–433, 201110.1038/nmat301221532583 Search in Google Scholar

[7] A. Abutaha, P. Kumar, E. Yildirim, W. Shi, S.-W. Yang, G. Wu, and K. Hippalgaonkar, “Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers,” Nat. Commun., vol. 11, no. 1, p. 1737, 202010.1038/s41467-020-15399-2714209232269219 Search in Google Scholar

[8] G. Zuo, Z. Li, O. Andersson, H. Abdalla, E. Wang, and M. Kemerink, “Molecular doping and trap filling in organic semiconductor host–guest systems,” J. Phys. Chem. C, vol. 121, no. 14, pp. 7767–7775.10.1021/acs.jpcc.7b01758 Search in Google Scholar

[9] T. Ma, B. X. Dong, J. W. Onorato, J. Niklas, O. Poluektov, C. K. Luscombe, and S. N. Patel, “Correlating conductivity and seebeck coefficient to doping within crystalline and amorphous domains in poly(3-(methoxyethoxyethoxy)thiophene),” J. Polym. Sci., vol. 59, no. 22, pp. 2797–2808, 202110.1002/pol.20210608 Search in Google Scholar

[10] X. Wang, V. Askarpour, J. Maassen, and M. Lundstrom, “On the calculation of Lorenz numbers for complex thermoelectric materials,” J. Appl. Phys., vol. 123, no. 5, p. 055104, 201810.1063/1.5009939 Search in Google Scholar

[11] M. Upadhyaya, C. J. Boyle, D. Venkataraman, and Z. Aksamija, “Effects of disorder on thermoelectric properties of semiconducting polymers,” Sci. Rep., vol. 9, no. 1, p. 5820, Appl. Phys. Rev. 201910.1038/s41598-019-42265-z645661630967596 Search in Google Scholar

[12] A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene),” Adv. Mater., vol. 27, no. 12, pp. 2101–2106, 201510.1002/adma.20140473825688732 Search in Google Scholar

[13] L. Liu, L. Liang, L. Deng, H. Wang, and G. Chen, “Is there a constant lorentz number for organic thermoelectric materials?” Appl. Mater. Today, vol. 27, p. 10149610.1016/j.apmt.2022.101496 Search in Google Scholar

[14] N. Mott, “Electrons in disordered structures,” Adv. Phys., vol. 16, no. 61, pp. 49–14410.1080/00018736700101265 Search in Google Scholar

[15] C. Deibel, D. Mack, J. Gorenflot, A. Schöll, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, “Energetics of excited states in the conjugated polymer poly(3-hexylthiophene),” Phys. Rev. B, vol. 81, p. 085202, 201010.1103/PhysRevB.81.085202 Search in Google Scholar

[16] N. Vukmirovic and L.-W. Wang, “Density of states and wave function localization in disordered conjugated polymers: A large scale computational study,” J. Phys. Chem. B, vol. 115, no. 8, pp. 1792–1797, 201110.1021/jp111452721291182 Search in Google Scholar

[17] S. Hood, N. Zarrabi, P. Meredith, I. Kassal, and A. Armin, “Measuring energetic disorder in organic semiconductors using the photogenerated charge-separation efficiency,” The Journal of Physical Chemistry Letters, vol. 10, no. 14, pp. 3863–387010.1021/acs.jpclett.9b0130431246471 Search in Google Scholar

[18] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, “Approaching disorder-free transport in high-mobility conjugated polymers,” Nature, vol. 515, no. 7527, pp. 384–388, Nov. 201410.1038/nature1385425383522 Search in Google Scholar

[19] P. Gemünden, C. Poelking, K. Kremer, K. Daoulas, and D. Andrienko, “Effect of mesoscale ordering on the density of states of polymeric semiconductors,” Macromolecular Rapid Communications, vol. 36, no. 11, pp. 1047–1053, 201510.1002/marc.20140072525757441 Search in Google Scholar

[20] V. Lemaur, J. Cornil, R. Lazzaroni, H. Sirringhaus, D. Beljonne, and Y. Olivier, “Resilience to conformational fluctuations controls energetic disorder in conjugated polymer materials: Insights from atomistic simulations,” vol. 31, no. 17, pp. 6889–689910.1021/acs.chemmater.9b01286 Search in Google Scholar

[21] A.-R. Han, G. K. Dutta, J. Lee, H. R. Lee, S. M. Lee, H. Ahn, T. J. Shin, J. H. Oh, and C. Yang, “ε-branched flexible side chain substituted diketopyrrolopyrrole-containing polymers designed for high hole and electron mobilities,” Adv. Func. Mater., vol. 25, no. 2, pp. 247–254, 201510.1002/adfm.201403020 Search in Google Scholar

[22] Y.-W. Huang, Y.-C. Lin, H.-C. Yen, C.-K. Chen, W.-Y. Lee, W.-C. Chen, and C.-C. Chueh, “High mobility preservation of near amorphous conjugated polymers in the stretched states enabled by biaxially-extended conjugated side-chain design,” vol. 32, no. 17, pp. 7370–738210.1021/acs.chemmater.0c02258 Search in Google Scholar

[23] A. Abtahi, S. Johnson, S. M. Park, X. Luo, Z. Liang, J. Mei, and K. R. Graham, “Designing π-conjugated polymer blends with improved thermoelectric power factors,” J. Mater. Chem. A, vol. 7, pp. 19774–1978510.1039/C9TA07464C Search in Google Scholar

[24] N. Vukmirovic and L.-W. Wang, “Charge carrier motion in disordered conjugated polymers: A multiscale ab initio study,” Nano Lett., vol. 9, no. 12, pp. 3996–4000, 200910.1021/nl902153919908900 Search in Google Scholar

[25] A. Karki, G.-J. A. H. Wetzelaer, G. N. M. Reddy, V. Nádaždy, M. Seifrid, F. Schauer, G. C. Bazan, B. F. Chmelka, P. W. M. Blom, and T.-Q. Nguyen, “Unifying energetic disorder from charge transport and band bending in organic semiconductors,” Adv. Func. Mater., vol. 29, no. 20, p. 1901109, 201910.1002/adfm.201901109 Search in Google Scholar

[26] V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B, vol. 71, p. 045214, 200510.1103/PhysRevB.71.045214 Search in Google Scholar

[27] G. Zuo, H. Abdalla, and M. Kemerink, “Impact of doping on the density of states and the mobility in organic semiconductors,” Phys. Rev. B, vol. 93, p. 235203, 201610.1103/PhysRevB.93.235203 Search in Google Scholar

[28] D. Ju, J. Kim, H. Yook, J. W. Han, and K. Cho, “Engineering counter-ion-induced disorder of a highly doped conjugated polymer for high thermoelectric performance,” Nano Energy, vol. 90, p. 10660410.1016/j.nanoen.2021.106604 Search in Google Scholar

[29] A. Miller and E. Abrahams, “Impurity conduction at low concentrations,” Phys. Rev., vol. 120, pp. 745–755, 196010.1103/PhysRev.120.745 Search in Google Scholar

[30] R. P. Fornari, J. Aragó, and A. Troisi, “A very general rate expression for charge hopping in semiconducting polymers,” J. Chem. Phys., vol. 142, no. 18, p. 184105, 201510.1063/1.492094525978881 Search in Google Scholar

[31] R. A. Marcus, “Electron transfer reactions in chemistry. theory and experiment,” Rev. Mod. Phys., vol. 65, pp. 599–610, 199310.1103/RevModPhys.65.599 Search in Google Scholar

[32] J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, and X. Y. Hou, “Carrier density dependence of mobility in organic solids: A monte carlo simulation,” Phys. Rev. B, vol. 75, p. 153201, 200710.1103/PhysRevB.75.153201 Search in Google Scholar

[33] S. Ihnatsenka, X. Crispin, and I. V. Zozoulenko, “Understanding hopping transport and thermoelectric properties of conducting polymers,” Phys. Rev. B, vol. 92, p. 035201, 201510.1103/PhysRevB.92.035201 Search in Google Scholar

[34] L. Wang and D. Beljonne, “Charge transport in organic semiconductors: Assessment of the mean field theory in the hopping regime,” J. Chem. Phys., vol. 139, no. 6, p. 064316, 201310.1063/1.481785623947864 Search in Google Scholar

[35] V. Ambegaokar, B. I. Halperin, and J. S. Langer, “Hopping conductivity in disordered systems,” Phys. Rev. B, vol. 4, pp. 2612–2620, 197110.1103/PhysRevB.4.2612 Search in Google Scholar

[36] N. Vukmirovic and L.-W. Wang, “Carrier hopping in disordered semiconducting polymers: How accurate is the Miller–Abrahams model?” Áppl. Phys. Lett., vol. 97, no. 4, p. 043305, 201010.1063/1.3474618 Search in Google Scholar

[37] H. Tanaka, K. Kanahashi, N. Takekoshi, H. Mada, H. Ito, Y. Shimoi, H. Ohta, and T. Takenobu, “Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating,” Sci. Adv., vol. 6, no. 7, 202010.1126/sciadv.aay8065702149432110735 Search in Google Scholar

[38] S. A. Gregory, R. Hanus, A. Atassi, J. M. Rinehart, J. P. Wooding, A. K. Menon, M. D. Losego, G. J. Snyder, and S. K. Yee, “Quantifying charge carrier localization in chemically doped semiconducting polymers,” Nature Mater., vol. 20, no. 10, pp. 1414–142110.1038/s41563-021-01008-034017120 Search in Google Scholar

[39] S. Dongmin Kang and G. Jeffrey Snyder, “Charge-transport model for conducting polymers,” Nat. Mater., vol. 16, p. 252–257, 201610.1038/nmat478427842076 Search in Google Scholar

[40] T. Sakanoue and H. Sirringhaus, “Band-like temperature dependence of mobility in a solution-processed organic semiconductor,” Nature Mater., vol. 9, no. 9, pp. 736–740, 201010.1038/nmat282520729848 Search in Google Scholar

[41] A. J. Mozer and N. S. Sariciftci, “Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers,” vol. 389, no. 4, pp. 438–44210.1016/j.cplett.2004.04.001 Search in Google Scholar

[42] S. Ukai, H. Ito, K. Marumoto, and S.-i. Kuroda, “Electrical conduction of regioregular and regiorandom poly(3-hexylthiophene) doped with iodine,” Journal of the Physical Society of Japan, vol. 74, no. 12, pp. 3314–331910.1143/JPSJ.74.3314 Search in Google Scholar

[43] C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett., vol. 91, p. 216601, 200310.1103/PhysRevLett.91.21660114683323 Search in Google Scholar

[44] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, and M. F. Toney, “Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight,” Macromolecules, vol. 38, no. 8, pp. 3312–331910.1021/ma047415f Search in Google Scholar

[45] D. Derewjanko, D. Scheunemann, E. Järsvall, A. I. Hofmann, C. Müller, and M. Kemerink, “Delocalization enhances conductivity at high doping concentrations,” Adv. Func. Mater., vol. 32, no. 20, p. 2112262, 202210.1002/adfm.202112262 Search in Google Scholar

[46] I. E. Jacobs, G. D’Avino, V. Lemaur, Y. Lin, Y. Huang, C. Chen, T. F. Harrelson, W. Wood, L. J. Spalek, T. Mustafa, C. A. O’Keefe, X. Ren, D. Simatos, D. Tjhe, M. Statz, J. W. Strzalka, J.-K. Lee, I. McCulloch, S. Fratini, D. Beljonne, and H. Sirringhaus, “Structural and dynamic disorder, not ionic trapping, controls charge transport in highly doped conducting polymers,” J. Amer. Chem. Soc., vol. 144, no. 7, pp. 3005–301910.1021/jacs.1c10651887492235157800 Search in Google Scholar

[47] P. Y. Yee, D. T. Scholes, B. J. Schwartz, and S. H. Tolbert, “Dopant-induced ordering of amorphous regions in regiorandom P3HT,” J. Phys. Chem. Lett., vol. 10, no. 17, pp. 4929–493410.1021/acs.jpclett.9b0207031382748 Search in Google Scholar

[48] X. Jiang, Y. Harima, K. Yamashita, Y. Tada, J. Ohshita, and A. Kunai, “A transport study of poly(3-hexylthiophene) films with different regioregularities,” Synth. Met., vol. 135-136, pp. 351–35210.1016/S0379-6779(02)00541-6 Search in Google Scholar

[49] S. T. Keene, W. Michaels, A. Melianas, T. J. Quill, E. J. Fuller, A. Giovannitti, I. McCulloch, A. A. Talin, C. J. Tassone, J. Qin, A. Troisi, and A. Salleo, “Efficient electronic tunneling governs transport in conducting polymer-insulator blends,” J. Amer. Chem. Soc., vol. 144, no. 23, pp. 10368–1037610.1021/jacs.2c02139920475935658455 Search in Google Scholar

[50] E. Lim, A. M. Glaudell, R. Miller, and M. L. Chabinyc, “The role of ordering on the thermoelectric properties of blends of regioregular and regiorandom poly(3-hexylthiophene),” Adv. Electron. Mater., vol. 5, no. 11, p. 1800915, 201910.1002/aelm.201800915 Search in Google Scholar

[51] D. T. Scholes, P. Y. Yee, J. R. Lindemuth, H. Kang, J. Onorato, R. Ghosh, C. K. Luscombe, F. C. Spano, S. H. Tolbert, and B. J. Schwartz, “The effects of crystallinity on charge transport and the structure of sequentially processed f4tcnq-doped conjugated polymer films,” Adv. Func. Mater., vol. 27, no. 44, p. 1702654, 201710.1002/adfm.201702654 Search in Google Scholar

[52] A. Fediai, F. Symalla, P. Friederich, and W. Wenzel, “Disorder compensation controls doping efficiency in organic semiconductors,” Nat. Commun., vol. 10, no. 1, p. 4547, 201910.1038/s41467-019-12526-6677989931591405 Search in Google Scholar

[53] X. Yan, M. Xiong, X.-Y. Deng, K.-K. Liu, J.-T. Li, X.-Q. Wang, S. Zhang, N. Prine, Z. Zhang, W. Huang, Y. Wang, J.-Y. Wang, X. Gu, S. K. So, J. Zhu, and T. Lei, “Approaching disorder-tolerant semiconducting polymers,” Nat. Commun., vol. 12, no. 1, p. 572310.1038/s41467-021-26043-y848133634588457 Search in Google Scholar

[54] T. J. Aubry, K. J. Winchell, C. Z. Salamat, V. M. Basile, J. R. Lindemuth, J. M. Stauber, J. C. Axtell, R. M. Kubena, M. D. Phan, M. J. Bird, A. M. Spokoyny, S. H. Tolbert, and B. J. Schwartz, “Tunable dopants with intrinsic counterion separation reveal the effects of electron affinity on dopant intercalation and free carrier production in sequentially doped conjugated polymer films,” Adv. Func. Mater., vol. 30, no. 28, p. 2001800, 202010.1002/adfm.202001800735724832684909 Search in Google Scholar

[55] C. J. Boyle, M. Upadhyaya, P. Wang, L. A. Renna, M. Lu-Díaz, S. Pyo Jeong, N. Hight-Huf, L. Korugic-Karasz, M. D. Barnes, Z. Aksamija, and D. Venkataraman, “Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films,” Nat. Commun., vol. 10, no. 1, p. 282710.1038/s41467-019-10567-5661012931270313 Search in Google Scholar

[56] M. Upadhyaya, M. Lu-Díaz, S. Samanta, M. Abdullah, K. Dusoe, K. R. Kittilstved, D. Venkataraman, and Z. Akšamija, “Raising dielectric permittivity mitigates dopant-induced disorder in conjugated polymers,” Adv. Sci., vol. 8, no. 19, p. 2101087, 202110.1002/advs.202101087849890334382366 Search in Google Scholar

[57] M. Comin, S. Fratini, X. Blase, and G. D’Avino, “Doping-induced dielectric catastrophe prompts free-carrier release in organic semiconductors,” Adv. Mater., vol. 34, no. 2, p. 2105376, 202210.1002/adma.20210537634647372 Search in Google Scholar

[58] I. H. Jung, C. T. Hong, U.-H. Lee, Y. H. Kang, K.-S. Jang, and S. Y. Cho, “High thermoelectric power factor of a diketopyrrolopyrrole-based low bandgap polymer via finely tuned doping engineering,” Sci. Rep., vol. 7, p. 44704, Mar. 201710.1038/srep44704535779628317929 Search in Google Scholar

[59] Y. Zhong, V. Untilova, D. Muller, S. Guchait, C. Kiefer, L. Herrmann, N. Zimmermann, M. Brosset, T. Heiser, and M. Brinkmann, “Preferential location of dopants in the amorphous phase of oriented regioregular poly(3-hexylthiophene-2,5-diyl) films helps reach charge conductivities of 3000 s cm-1,” Adv. Func. Mater., vol. 32, no. 30, p. 2202075, 202210.1002/adfm.202202075 Search in Google Scholar

[60] B. Nell, K. Ortstein, O. V. Boltalina, and K. Vandewal, “Influence of dopant–host energy level offset on thermoelectric properties of doped organic semiconductors,” J. Phys. Chem. C, vol. 122, no. 22, pp. 11730–11735, 201810.1021/acs.jpcc.8b03804 Search in Google Scholar

[61] H. Li, E. Plunkett, Z. Cai, B. Qiu, T. Wei, H. Chen, S. M. Thon, D. H. Reich, L. Chen, and H. E. Katz, “Dopant-dependent increase in seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies,” Adv. Electron. Mater., vol. 5, no. 11, p. 1800618, 201910.1002/aelm.201800618 Search in Google Scholar