Accès libre

The Influence of Neutron and Gamma Radiation Fields on Gas-Filled Surge Arresters

À propos de cet article

Citez

[1] P. Osmokrović, I. Krivokapić, D. Matijašević and N. Kartalović, “Stability of the gas filled surge arresters characteristics under service conditions”, (1996) IEEE Transactions on Power Delivery, 11 (1), pp. 260 - 26610.1109/61.484024 Search in Google Scholar

[2] M. Beyer, and et al., Hochspannungtechnik, “Theoretische und Praktische Grundlagen”, Springer-Verlag, Berlin Heidelberg, 198610.1007/978-3-642-61633-4 Search in Google Scholar

[3] Y.P. Raizer, “Gas Discharge Physics”, Springer-Verlag Berlin Heidelberg, Germany, 199110.1007/978-3-642-61247-3 Search in Google Scholar

[4] A. Von Angel, “Ionized gases”, Physics Today, 17 (1964), 9, pp. 108-10810.1063/1.3051786 Search in Google Scholar

[5] K.F. Geibig, A. Schwab and D. Stöckel, “Einsatz von Faserverbundwerkstoffen in“, (1983) Materialwissenschaft und Werkstofftechnik, 14 (6), pp. 197 - 20110.1002/mawe.19830140607 Search in Google Scholar

[6] P. Osmokrovic, A. Vasic and T. Zivic, “The Influence of the electric field shape on the gas breakdown under low pressure and small inter-electrode gap conditions”, (2005) IEEE Transactions on Plasma Science, 33 (5 I), pp. 1677 - 168110.1109/TPS.2005.856427 Search in Google Scholar

[7] P. Osmokrovic, B. Loncar and R. Sasic, “Influence of the electrode parameters on pulse shape characteristic of gas-filled surge arresters at small pressure and inter-electrode gap values”, (2005) IEEE Transactions on Plasma Science, 33 (5 II), pp. 1729 – 173510.1109/TPS.2005.856415 Search in Google Scholar

[8] T. M. Nedic, et al. “Optimization of fast three-electrode spark gaps isolated with a SF6 and He mixture”, Nuclear Technology & Radiation Protection: Year 2021, Vol. 36, No. 3, pp. 234-24210.2298/NTRP2103234N Search in Google Scholar

[9] Hylten-Cavallius Nils, High Voltage Laboratory Planning, Haeffely Basel, 1988 Search in Google Scholar

[10] V. S. Polužanski, et al., “Computer Non-Iterative Data Acquisition of Particle”, Nucl Technol Radiat, 34 (2019), 1, pp. 65-7110.2298/NTRP190125007P Search in Google Scholar

[11] A. Jusić, et al., “Synergy of radioactive 241Am and the effect of hollow cathode in optimizing gas-insulated surge arresters characteristics”, Nucl Technol Radiat, 33 (2018), 3, pp. 260-26710.2298/NTRP1803260J Search in Google Scholar

[12] HUBER+SUHNER AG: EMP protectors, Detail specification for protectors, 1989 Search in Google Scholar

[13] T.M. Nedić, A.J. Janićijević, K.D. Stanković and N.M. Kartalović, “Efficient replacement of the radioactive sources in the gas-filled surge arresters construction for the insulation co-ordination at the low voltage level”, (2020) Nuclear Technology and Radiation Protection, 35 (2), pp. 130 - 13710.2298/NTRP2002130N Search in Google Scholar

[14] P. Osmokrovic, B. Loncar and S. Stankovic, “The new method of determining characteristics of elements for overvoltage protection of low-voltage system”, (2006) IEEE Transactions on Instrumentation and Measurement, 55 (1), pp. 257 - 26510.1109/TIM.2005.862023 Search in Google Scholar

[15] M.M. Pejovic, et al., “Investigation of post-discharge processes in nitrogen at low pressure”, Physics of Plasmas, 19 (2012), 12, pp. 123512-810.1063/1.4773026 Search in Google Scholar

[16] S.C. Brown and E.H. Holt, “Introduction to Electrical Discharges in Gases”, American Journal of Physics, 36 (1968), 9, pp. 854-85410.1119/1.1975174 Search in Google Scholar

[17] P. Osmokrovic, et al., “Mechanism of electrical breakdown of gases for pressures from 10-9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm”, Plasma Sources Science and Technology, 16 (2007), 3, pp. 643-65510.1088/0963-0252/16/3/025 Search in Google Scholar

[18] M. Pejovic, et al., “Processes in insulating gas induced by electrical breakdown responsible for commercial gas-filled surge arresters delay response”, Vacuum, 137 (2017), pp. 85-9110.1016/j.vacuum.2016.12.030 Search in Google Scholar

[19] P. Osmokrović, et al., “Determination of pulse tolerable voltage in gas-insulated systems”, Japanese Journal of Applied Physics, 47 (2008), 12, pp. 8928-893410.1143/JJAP.47.8928 Search in Google Scholar

[20] B. Loncar, P. Osmokrovic and S. Stankovic, “Radioactive Reliability of Gas Filled Surge Arresters”, (2003) IEEE Transactions on Nuclear Science, 50 (5 III), pp. 1725 – 173110.1109/TNS.2003.818269 Search in Google Scholar

[21] P. Osmokrovic, M. Stojanovic, B. Loncar, N. Kartalovic and I. Krivokapic, “Radioactive resistance of elements for over-voltage protection of low-voltage systems, (1998) Nuclear Instruments and Methods in Physics Research”, Section B: Beam Interactions with Materials and Atoms, 140 (1-2), pp. 143 - 15110.1016/S0168-583X(97)00921-X Search in Google Scholar

[22] G. Cook, “Gas-filled surge arresters for NEMP protection”, pp. 85-90, ITEM, 1986 Search in Google Scholar

[23] K. Stanković and M. Vujisić, “Influence of radiation energy and angle of incidence on the uncertainty in measurements by GM counters”, Nucl Technol Radiat, 23 (2008), 1, pp. 41-4210.2298/NTRP0801041S Search in Google Scholar

[24] B. Vulević and P. Osmokrović, “Evaluation of uncertainty in the measurement of environmental electromagnetic fields”, Radiation Protection Dosimetry, 141 (2010), 2, pp. 173-710.1093/rpd/ncq158 Search in Google Scholar

[25] A.J. Schwab, “High-voltage Measurement Techniques”, M.I.T. Press, 1972 Search in Google Scholar

[26] S.B. Djekić, D.P. Nikezić, D.V. Brajović, N.M. Kartalović and U.R. Ramadani, “Passive and active shielding against electromagnetic radiation”, (2020) Nuclear Technology and Radiation Protection, 35 (4), pp. 331 – 33810.2298/NTRP2004331D Search in Google Scholar

[27] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, “Guide to the Expression of Uncertainty in Measurement”, Geneva, Switzerland: International Organization for Standardization, 1995 Search in Google Scholar

[28] K. Stanković, M. Vujisić and E. Dolićanin, “Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation”, (2009) Nuclear Technology and Radiation Protection, 24 (2), pp. 132 – 137.10.2298/NTRP0902132S Search in Google Scholar