Accès libre

About Applications of Deep Learning Operator Networks for Design and Optimization of Advanced Materials and Processes

À propos de cet article

Citez

[1] E. Fatehi, H. Yazdani Sarvestani, B. Ashrafi, A. H. Akbarzadeh: Accelerated design of architectured ceramics with tunable thermal resistance via a hybrid machine learning and finite element approach, Materials & Design, vol. 210, 110056, 202110.1016/j.matdes.2021.110056 Search in Google Scholar

[2] H. T. Kollmann, D. W. Abueidda, S. Koric, E. Guleryuz, N. A. Sobh: Deep learning for topology optimization of 2D metamaterials, Materials & Design, vol. 196, 110056, 202110.1016/j.matdes.2020.109098 Search in Google Scholar

[3] Q. Zhu, Z. Liu, J. Yan: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks, Computational Mechanics, vol. 67, pp. 619-635, 202110.1007/s00466-020-01952-9 Search in Google Scholar

[4] G. X. Gu, C. Chen, D. J. Richmond, M. J. Buehler: Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment, Materials Horizons vol. 5.5, pp. 939-945, 201810.1039/C8MH00653A Search in Google Scholar

[5] S. Shahane, E. Guleryuz, D. W. Abueidda, A. Lee, J. Liu, X. Yu, R. Chiu, S. Koric, N. R. Aluru, P. M. Ferreira: Surrogate neural network model for sensitivity analysis and uncertainty quantification of the mechanical behaviour in the optical lens-barrel assembly, Computers & Structures, vol. 270, 106843, 202210.1016/j.compstruc.2022.106843 Search in Google Scholar

[6] D. W. Abueidda, Q. Lu, S. Koric: Meshless physics-informed deep learning method for three-dimensional solid mechanics, International Journal for Numerical Methods in Engineering, vol. 122(23), pp. 7182-7201, 202110.1002/nme.6828 Search in Google Scholar

[7] L. Lu., P. Jin., G. Pang., Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat. Mach. Intell., vol. 3, pp. 218–229, 202110.1038/s42256-021-00302-5 Search in Google Scholar

[8] S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, Science Advances, vol. 7(40), pp. 1-9, 202110.1126/sciadv.abi8605848092034586842 Search in Google Scholar

[9] S. Pattanayak: Pro Deep Learning with Tensorflow: a Mathematical Approach to Advanced Artificial Intelligence in python, Apress, Springer New York, 201710.1007/978-1-4842-3096-1_1 Search in Google Scholar

[10] GRoT Linear and Nonlinear Finite Element Method solver, https://github.com/tutajrobert/grot Search in Google Scholar

[11] O. C. Zienkiewicz and R. L. Taylor., 2000. The Finite Element Method 5th ed., Oxford Butterworth-Heinemann, Portsmouth, NH, 2000 Search in Google Scholar

[12] S. Koric, B. G Thomas: Efficient thermo-mechanical model for solidification processes, International Journal for Numerical Methods in Engineering, vol. 66, pp. 1955–1989, 200610.1002/nme.1614 Search in Google Scholar

[13] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang: JAX: Composable transformations of Python+NumPy programs (2018). Search in Google Scholar

[14] ABAQUS/Standard User’s Manual, Version 2019. Providence, RI: Dassault Systèmes Simulia Corp, 2019 Search in Google Scholar