Accès libre

Assessing the effects of live yeast supplementation to diets containing high starch of dairy cows on rumen fermentation and methane production in vitro

À propos de cet article

Citez

Abdela, N., 2016. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Adv Life Sci. 10(2), 187–196. Search in Google Scholar

Agle, M., A.N. Hristov, S. Zaman, C. Schneider, P.M. Ndegwa, Vaddella, V.K., 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J Dairy Sci. 93(9), 4211–4222. Search in Google Scholar

Alugongo, G.M., J. Xiao, Z. Wu, S. Li, Y. Wang, Cao, Z., 2017. Utilization of yeast of S. cerevisiae origin in artificially raised calves. J Anim Sci. Biotechnol. 8(1), 1–12. Search in Google Scholar

Amanzougarene, Z., M.P. Tejeda, H. Calvo, G. de la Fuente, Fondevila, M., 2020. Microbial fermentation of starch or fibre‐rich feeds added with dry or pre‐activated S. cerevisiae studied in vitro under conditions simulating high‐concentrate feeding for ruminants. J Sci Food Agric. 100(5), 2236–2243. Search in Google Scholar

Amin, A.B., Mao, S., 2021. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim Nutr. 7(1), 31–41. Search in Google Scholar

AOAC. 1990. Association of official analytical chemists, official methods of analysis, 15th ed. AOAC, Arlington, 66–88 p. Search in Google Scholar

Baker, L.M., J. Kraft, T.P. Karnezos, Greenwood, S.L., 2022. The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim Feed Sci Technol. 115476. Search in Google Scholar

Barrera, O.R., J. Salinas-Chavira, Castillo, Y.C., 2019. Yeasts as dietary additives to manipulate ruminal fermentation: effect on nutrient utilization and productive performance of ruminants. Yeasts in Biotechnology. IntechOpen. 1–8. Search in Google Scholar

Bayat, A.R., P. Kairenius, T. Stefański, H. Leskinen, S. Comtet-Marre, E. Forano, F. Chaucheyras-Durand, Shingfield, K.J., 2015. Effect of camelina oil or live yeasts (S. cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J Dairy Sci. 98(5), 3166–3181. Search in Google Scholar

Boerman, J.P., S.B. Potts, M.J. VandeHaar, Lock, A.L., 2015. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning. J Dairy Sci. 98(10), 7264–7276. Search in Google Scholar

Cagle, C.M., M.A. Fonseca, T.R. Callaway, C.A. Runyan, M.D. Cravey, Tedeschi, L.O., 2020. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Appl Anim Sci. 36(1), 36–47. Search in Google Scholar

Chai, W.Z., A.H. Van Gelder and J.W. Cone (2004). Relationship between gas production and starch degradation in feed samples. Anim. Feed. Sci. Technol. 114(1–4), 195–204. Search in Google Scholar

Chaucheyras-Durand, F., N.D. Walker, Bach, A., 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci Technol. 145(1–4), 5–26. Search in Google Scholar

Cherdthong, A., Supapong, C., 2019. Improving the nutritive value of cassava bioethanol waste using fermented yeast as a partial replacement of protein source in dairy calf ration. Trop Anim Health Prod. 51(8), 2139–2144. Search in Google Scholar

Crossland, W.L, C.M. Cagle, J.E. Sawyer, T.R. Callaway, Tedeschi, L.O., 2019. Evaluation of active dried yeast in the diets of feedlot steers. II. effects on rumen pH and liver health of feedlot steers. J Anim Sci. 97, 1347–1363. Search in Google Scholar

Darabighane, B., A.Z.M. Salem, F. Mirzaei Aghjehgheshlagh, A. Mahdavi, A. Zarei, M.M.M.Y. Elghandour, López, S., 2019. Environmental efficiency of S. cerevisiae on methane production in dairy and beef cattle via a meta-analysis. Environ Sci Pollut Res. 26(4), 3651–3658. Search in Google Scholar

Desnoyers, M., S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter, Sauvant D., 2009. Meta-analysis of the influence of S. cerevisiae supplementation on ruminal parameters and milk production of ruminants. J Dairy Sci. 92(4), 1620–1632. Search in Google Scholar

Dias, A.L.G., J.A. Freitas, B. Micai, R.A. Azevedo, L.F. Greco, Santos, J.E.P., 2018. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J Dairy Sci. 101, 201–221. Search in Google Scholar

Direkvandi, E., T. Mohammadabadi, Salem, A.Z.M., 2021. Influence of three microbial feed additives of Megasphaera elsdenii, S. cerevisiae and Lactobacillus sp. on ruminal methane and carbon dioxide production, and biofermentation kinetics. J Appl Microbiol. 131(2), 623–633. Search in Google Scholar

Elghandour, M.M.Y., J.C. Vázquez, A.Z.M. Salem, A.E. Kholif, M.M. Cipriano, L.M. Camacho, Márquez, O., 2017. In vitro gas and methane production of two mixed rations influenced by three different cultures of S. cerevisiae. J Appl Anim. Res. 45(1), 389–395. Search in Google Scholar

Elghandour, M.M., J.C.V. Chagoyán, A.Z.M. Salem, A.E. Kholif, J.S.M. Castañeda, L.M. Camacho, Cerrillo-Soto, M.A., 2014. Effects of S. cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital J. Anim Sci. 13(2), 3075. Search in Google Scholar

Freilich, S., R. Zarecki, O. Eilam, E.S. Segal, C.S. Henry, M. Kupiec, U. Gophna, R. Sharan, Ruppin, E., 2011. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2(1), 1–7. Search in Google Scholar

Garcia Diaz, T., A. Ferriani Branco, F.A. Jacovaci, C. Cabreira Jobim, J.L. Pratti Daniel, A.V. Iank Bueno, Gonçalves Ribeiro, M., 2018. Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PloS one, 13(11), e0207127. Search in Google Scholar

Getachew, G., M. Blümmel, H.P.S. Makkar, Becker K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci Technol. 72(3–4): 261–281. Search in Google Scholar

Getachew, G., H.P.S. Makkar, Becker, K., 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J Agric Sci. 139(3), 341–352. Search in Google Scholar

Goel, G., H.P.S. Makkar, Becker, K., 2008. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenumgraecum L.) seeds and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Anim Feed Sci. Technol. 147(1–3), 72–89. Search in Google Scholar

Jasmine Rani, K., V. Dildeep, K. Ally, K.M. Syam Mohan, T.V. Aravindakshan, Anil, K.S., 2022. In vıtro assessment of nutrıent dıgestıbılıty and mıcrobıal bıomass productıon of total mıxed ratıon supplemented wıth dıfferent levels of thermostable yeast ın crossbred daıry cows. J. Indian Vet. Assoc. 20 (1), 23–32. Search in Google Scholar

Jeyanathan, J., C. Martin, Morgavi, D.P., 2016. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep. J Anim Sci. 94, 739–750. Search in Google Scholar

Jiao, P.X., Z.X. He, S. Ding, N.D. Walker, Y.Y. Cong, F.Z. Liu, K. Beauchemin, Yang, W.Z., 2018. Impact of strain and dose of live yeast and yeast derivatives on in vitro ruminal fermentation of a high-grain diet at two pH levels. Can J Anim Sci. 98(3), 477–487. Search in Google Scholar

Jouany, J.P, 2006. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Anim Reprod Sci. 96, 250–264. Search in Google Scholar

Knollinger, S.E., M. Poczynek, B. Miller, I. Mueller, R. de Almeida, M.R. Murphy, Cardoso, F.C., 2022. Effects of autolyzed yeast supplementation in a high-starch diet on rumen health, apparent digestibility, and production variables of lactating holstein cows. Animals, 12(18), 2445. Search in Google Scholar

Kumprechtova, D., J. Illek, C. Julien, P. Homolka, F. Janĉík, Auclair, E., 2019. Effect of live yeast (S. cerevisiae) supplementation on rumen fermentation and metabolic profile of dairy cows in early lactation. J. Anim Physiol Anim Nutr. 103, 447–455. Search in Google Scholar

Lara, E.C., U.C. Bragiato, C.H. Rabelo, J.D. Messana, Reis, R.A., 2018. Inoculation of corn silage with Lactobacillus plantarum and Bacillus subtilis associated with amylolytic enzyme supply at feeding. 1. Feed intake, apparent digestibility, and microbial protein synthesis in wethers. Anim Feed Sci Technol. 243, 22–34. Search in Google Scholar

Li, R.W., E.E. Connor, C. Li, VIR.L. Baldwin, Sparks, M.E., 2012. Characterization of the rumen microbiota of pre‐ruminant calves using metagenomic tools. Environ Microbiol. 14(1), 129–139. Search in Google Scholar

Li, Y., Y. Shen, J. Niu, Y. Guo, M. Pauline, X. Zhao, Z. Wang, Y. Gao, Li, J., 2021. Effect of active dry yeast on lactation performance, methane production, and ruminal fermentation patterns in early-lactating Holstein cows. J Dairy Sci. 104(1), 381–390. Search in Google Scholar

Lynch, H.A., Martin, S.A., 2002. Effects of S. cerevisiae culture and S. cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J Dairy Sci. 85(10), 2603–2608. Search in Google Scholar

Maamouri, O., B. Jemmali, M. Amrawi, H. Selmi, Rouissi, H., 2016. Effects of yeast (S. cerevisiae) feed concentrate supplement on growth performances and microbial activity in the rumen of “Queue Fine de l’Ouest” lambs. J New Sci. 14: 1297–1302. Search in Google Scholar

McAllister, T.A., Cheng, K.J., 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim Feed Sci. Technol. 62(1), 29–36. Search in Google Scholar

Menke, K. H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev. 28, 7–55 Search in Google Scholar

Monroy Salazar H, A.Z.M. Salem, A. Kholif, P. Fernandez, J.L. Zamora, H. Monroy, L.S. Pérez, Acosta, J., 2016. Mode of action of yeast in animal nutrition. In Yeast additive and animal production (ed. A.Z.M. Salem, A.E. Kholif and A.K. Puniya), PubBioMed Central Research Publishing Services, Kolkata (India), 14–20 p. Search in Google Scholar

Mora B.G, O. Ruiz-Barrera, F.C. Rangel, Castillo-Castillo, Y., 2023. Effect of live yeasts (Pichia guilliermondii) on ın vitro fermentation of corn stover as a fibrous substrate. Fermentation. 9, 17. Search in Google Scholar

Moya, D., A. Ferret, M. Blanch, M.C. Fuentes, J.I. Fandiño, Calsamiglia, S., 2018. Effects of live yeast (S. cerevisiae) and type of cereal on rumen microbial fermentation in a dual flow continuous culture fermentation system. J Anim Physiol Anim Nutr. 102(6), 1488–1496. Search in Google Scholar

Moya, D., S. Calsamiglia, A. Ferret, M. Blanch, J.I. Fandino, L. Castillejos, Yoon, I. 2009. Effects of dietary changes and yeast culture (Saccharomycescerevisiae) on rumen microbial fermentation of Holstein heifers. J. Anim. Sci. 87, 2874–2881. Search in Google Scholar

National Research Council 2001. Nutrient requirements of dairy cattle, 7th revised edition. National Academy Press, Washington. Search in Google Scholar

Nayak, S.K., 2011. Biology of eukaryotic probiotics. In: M.P. Liong (ed.), Probiotics, Microbiology Monographs 21, Berlin, 29–55 p. Search in Google Scholar

Opsi, F., R. Fortina, S. Tassone, R. Bodas, López, S., 2012. Effects of inactivated and live cells of S. cerevisiae on in vitro ruminal fermentation of diets with different forage: concentrate ratio. J Agric Sci. 150(2), 271–283. Search in Google Scholar

Ørskov, E.R., McDonald, I., 1979. The estimation of protein degradability in the rumen from ıncubation measurement weighed according to rate of passage. J Agric Sci. 92, 499–503. Search in Google Scholar

Ovinge, L.A., J.O. Sarturi, M.L. Galyean, M.A. Ballou, S.J. Trojan, P.R. Campanili, A.A. Alrumaih, Pellarin, L.A., 2018. Effects of a live yeast in natural-program finishing feedlot diets on growth performance, digestibility, carcass characteristics, and feeding behavior. J Anim Sci. 96(2), 684–693. Search in Google Scholar

Phesatcha, K., B. Phesatcha, M. Wanapat, Cherdthong, A., 2020. Roughage to concentrate ratio and S. cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet Sci. 7(4): 151. Search in Google Scholar

Pulido, R., M.D. Mariezcurrena, M.A. Mariezcurrena, L. Cruz, M.M.M.Y. Elghandour, A.M. Kholif, E.M. Almaraz, Salem, A.Z.M., 2015. Influence of live cells or cells extract of S. cerevisiae on in vitro gas production of a total mixed ration. Ital J Anim Sci. 14(4), 590–595. Search in Google Scholar

Remesy, C., C. Demigne, Morand, C., 1995. Metabolism of short-chain fatty acids in the liver. In: Cummings, J. H., Rombeau, J. L., Sakata, T., (eds), Physiological and clinical aspects of short-chain fatty acids, (Cambridge University Press, Cambridge), 171–190 p. Search in Google Scholar

Song, B., T. Wu, P. You, H. Wang, J.L. Burke, K. Kang, W. Yu, M. Wang, B. Li, Y. He, Q. Huo, C. Li, W. Tian, R. Li, J. Li, C. Wang, Sun, X., 2021. Dietary supplementation of yeast culture ınto pelleted total mixed rations ımproves the growth performance of fattening lambs. Front Vet Sci. 8: 657816. Search in Google Scholar

Sun, X., Y. Wang, E. Wang, S. Zhang, Q. Wang, Y. Zhang, Y. Wang, Z. Cao, H. Yang, W. Wang, Li, S., 2021. Effects of S. cerevisiae culture on ruminal fermentation, blood metabolism, and performance of high-yield dairy cows. Animals. 11(8), 2401. Search in Google Scholar

Tan, H.Y., C.C. Sieo, N. Abdullah, J.B. Liang, X.D. Huang, Ho, Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol. 169(3–4), 185–193. Search in Google Scholar

Tang, L., W. Wang, W. Zhou, K. Cheng, Y. Yang, M. Liu, K. Cheng, Wang, W., 2015. Three-pathway combination for glutathione biosynthesis in S. cerevisiae. Microb Cell Factories. 14, 1–12. Search in Google Scholar

Tristant, D., Moran, C., 2015. The efficacy of feeding a live probiotic yeast, Yea-Sacc®, on the performance of lactating dairy cows. J Appl Anim. Nutr. 3, e12. Search in Google Scholar

Van Soest, P.J., J.B. Robertson, Lewıs, B.A., 1991. Methods of dietary fiber, neutral detergent fiber and nonpolysaccharides in relation to animal nutrition. J Dairy Sci. 74, 3583–3597. Search in Google Scholar

Wanapat, M., P. Gunun, N. Anantasook, Kang, S., 2014. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J Agric Sci. 152(4), 675–685. Search in Google Scholar

Wang, Z., Z. He, K.A. Beauchemin, S. Tang, C. Zhou, X. Han, M. Wang, J. Kang, N.E Odongo, Tan, Z., 2016. Evaluation of different yeast species for improving in vitro fermentation of cereal straws. Asian Australas J Anim Sci. 29(2), 230–240. Search in Google Scholar

Xiao, J. X., G.M. Alugongo, R. Chung, S.Z. Dong, S.L. Li, I. Yoon, Z.H. Wu, Cao, Z.J., 2016. Effects of S. cerevisiae fermentation products on dairy calves: ruminal fermentation, gastrointestinal morphology, and microbial community. J Dairy Sci. 99(7), 5401–5412. Search in Google Scholar

Yuan, K., T. Liang, M.B. Muckey, L.G.D. Mendonça, L.E. Hulbert, C.C. Elrod, Bradford, B.J., 2015. Yeast product supplementation modulated feeding behavior and metabolism in transition dairy cows. J Dairy Sci. 98(1), 532–540. Search in Google Scholar

eISSN:
2344-4592
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other