À propos de cet article

Citez

Altafini, A., Armorini, S., Zaghini, A., Sardi, L., & Roncada, P. (2017). Tissue distribution of ochratoxin A in pigs after administration of two-levels contaminated diets. World Mycotoxin Journal, 10(3), 263-272.10.3920/WMJ2016.2152 Search in Google Scholar

Andretta, I., Kipper, M., Lehnen, C., Hauschild, L., Vale, M., & Lovatto, P. (2011). Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poultry Science, 90(9), 1934-1940.10.3382/ps.2011-0147021844257 Search in Google Scholar

Assunção, R., Pinhão, M., Loureiro, S., Alvito, P., & Silva, M. J. (2019). A multi-endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicology letters, 313, 120-129.10.1016/j.toxlet.2019.06.00231212007 Search in Google Scholar

Bernáldez, V., Rodríguez, A., Delgado, J., Sánchez-Montero, L., & Córdoba, J. J. (2018). Gene expression analysis as a method to predict OTA accumulation in dry-cured meat products. Food Analytical Methods, 11(9), 2463-2471.10.1007/s12161-018-1231-0 Search in Google Scholar

Broom, L. (2017). Necrotic enteritis; current knowledge and diet-related mitigation. World’s Poultry Science Journal, 73(2), 281-292.10.1017/S0043933917000058 Search in Google Scholar

Brunse, A., Martin, L., Rasmussen, T. S., Christensen, L., Cilieborg, M. S., Wiese, M., . . . Sangild, P. T. (2019). Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs. The ISME journal, 13(3), 720-733.10.1038/s41396-018-0301-z646178230367124 Search in Google Scholar

Burel, C., Tanguy, M., Guerre, P., Boilletot, E., Cariolet, R., Queguiner, M., . . . Oswald, I. P. (2013). Effect of low dose of fumonisins on pig health: Immune status, intestinal microbiota and sensitivity to Salmonella. Toxins, 5(4), 841-864.10.3390/toxins5040841370529423612754 Search in Google Scholar

Cano-Sancho, G., González-Arias, C. A., Ramos, A., Sanchis, V., & Fernandez-Cruz, M. (2015). Cytotoxicity of the mycotoxins deoxynivalenol and ochratoxin A on Caco-2 cell line in presence of resveratrol. Toxicology in Vitro, 29(7), 1639-1646.10.1016/j.tiv.2015.06.02026100224 Search in Google Scholar

Crespo-Piazuelo, D., Migura-Garcia, L., Estellé, J., Criado-Mesas, L., Revilla, M., Castelló, A., . . . Ballester, M. (2019). Association between the pig genome and its gut microbiota composition. Scientific reports, 9(1), 1-11.10.1038/s41598-019-45066-6658462131217427 Search in Google Scholar

Duarte, S. C., Lino, C. M., & Pena, A. (2011). Ochratoxin A in feed of food-producing animals: An undesirable mycotoxin with health and performance effects. Veterinary microbiology, 154(1-2), 1-13.10.1016/j.vetmic.2011.05.00621641127 Search in Google Scholar

Faucet, V., Pfohl-Leszkowicz, A., Dai, J., Castegnaro, M., & Manderville, R. A. (2004). Evidence for covalent DNA adduction by ochratoxin A following chronic exposure to rat and subacute exposure to pig. Chemical research in toxicology, 17(9), 1289-1296.10.1021/tx049877s15377164 Search in Google Scholar

Gambacorta, L., Olsen, M., & Solfrizzo, M. (2019). Pig urinary concentration of mycotoxins and metabolites reflects regional differences, mycotoxin intake and feed contaminations. Toxins, 11(7), 378.10.3390/toxins11070378666969431262000 Search in Google Scholar

Gan, F., Hou, L., Zhou, Y., Liu, Y., Huang, D., Chen, X., & Huang, K. (2017). Effects of ochratoxin A on ER stress, MAPK signaling pathway and autophagy of kidney and spleen in pigs. Environmental toxicology, 32(10), 2277-2286.10.1002/tox.2244328699257 Search in Google Scholar

Grosu, I. A., Pistol, G. C., Marin, D. E., Cişmileanu, A., Palade, L. M., & Ţăranu, I. (2020). Effects of dietary grape seed meal bioactive compounds on the colonic microbiota of weaned piglets with Dextran Sodium Sulfate-induced colitis used as an inflammatory model. Frontiers in veterinary science, 7.10.3389/fvets.2020.00031705422632161762 Search in Google Scholar

Grosu, I. A., Pistol, G. C., Taranu, I., & Marin, D. E. (2019). The impact of dietary grape seed meal on healthy and aflatoxin B1 afflicted microbiota of pigs after weaning. Toxins, 11(1), 25.10.3390/toxins11010025635634930626035 Search in Google Scholar

Guo, M., Huang, K., Chen, S., Qi, X., He, X., Cheng, W.-H., . . . Xu, W. (2014). Combination of metagenomics and culture-based methods to study the interaction between ochratoxin a and gut microbiota. Toxicological Sciences, 141(1), 314-323.10.1093/toxsci/kfu128483311224973096 Search in Google Scholar

Hermann-Bank, M. L., Skovgaard, K., Stockmarr, A., Larsen, N., & Mølbak, L. (2013). The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC genomics, 14(1), 1-14.10.1186/1471-2164-14-788387971424225361 Search in Google Scholar

Huang, J., Zhang, W., Fan, R., Liu, Z., Huang, T., Li, J., . . . Xiong, T. (2020). Composition and functional diversity of fecal bacterial community of wild boar, commercial pig and domestic native pig as revealed by 16S rRNA gene sequencing. Archives of microbiology, 202(4), 843-857.10.1007/s00203-019-01787-w31894392 Search in Google Scholar

Kelly, J., Daly, K., Moran, A. W., Ryan, S., Bravo, D., & Shirazi-Beechey, S. P. (2017). Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences. Environmental microbiology, 19(4), 1425-1438.10.1111/1462-2920.1361927871148 Search in Google Scholar

Konstantinov, S. R., Favier, C. F., Zhu, W. Y., Williams, B. A., Klüß, J., Souffrant, W.- B., . . . Smidt, H. (2004). Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Animal Research, 53(4), 317-324.10.1051/animres:2004019 Search in Google Scholar

Kőszegi, T., & Poór, M. (2016). Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins, 8(4), 111.10.3390/toxins8040111484863727092524 Search in Google Scholar

Liew, W.-P.-P., & Mohd-Redzwan, S. (2018). Mycotoxin: its impact on gut health and microbiota. Frontiers in cellular and infection microbiology, 8, 60.10.3389/fcimb.2018.00060583442729535978 Search in Google Scholar

Majeed, M., Khaneghah, A. M., Kadmi, Y., Khan, M. U., & Shariati, M. A. (2018). Assessment of ochratoxin A in commercial corn and wheat products. Current Nutrition & Food Science, 14(2), 116-120.10.2174/1573401313666170330155823 Search in Google Scholar

Malagutti, L., Zannotti, M., Scampini, A., & Sciaraffia, F. (2005). Effects of ochratoxin A on heavy pig production. Animal Research, 54(3), 179-184.10.1051/animres:2005019 Search in Google Scholar

Marin, D., Motiu, M., Pistol, G., Gras, M., Israel-Roming, F., Calin, L., . . . Taranu, I. (2016). Diet contaminated with ochratoxin A at the highest level allowed by EU recommendation disturbs liver metabolism in weaned piglets. World Mycotoxin Journal, 9(4), 587-596.10.3920/WMJ2015.1993 Search in Google Scholar

Marin, D. E., & Taranu, I. (2015). Ochratoxin A and its effects on immunity. Toxin Reviews, 34(1), 11-20.10.3109/15569543.2014.958757 Search in Google Scholar

Matsui, H., Ishimoto-Tsuchiya, T., Maekawa, S., & Ban-Tokuda, T. (2018). Diversity and population density of methanogens in the large intestine of pigs fed diets of different energy levels. Animal Science Journal, 89(10), 1468-1474.10.1111/asj.1308330009395 Search in Google Scholar

Metzler-Zebeli, B. U., Schmitz-Esser, S., Klevenhusen, F., Podstatzky-Lichtenstein, L., Wagner, M., & Zebeli, Q. (2013). Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats. Anaerobe, 20, 65-73.10.1016/j.anaerobe.2013.02.00523474085 Search in Google Scholar

Mi, J., Peng, H., Wu, Y., Wang, Y., & Liao, X. (2019). Diversity and community of methanogens in the large intestine of finishing pigs. BMC microbiology, 19(1), 1-9.10.1186/s12866-019-1459-x648923231035941 Search in Google Scholar

Moretti, A., Pascale, M., & Logrieco, A. F. (2019). Mycotoxin risks under a climate change scenario in Europe. Trends in food science & technology, 84, 38-40.10.1016/j.tifs.2018.03.008 Search in Google Scholar

Organization, W. H. (2008). Safety evaluation of certain food additives and contaminants (Vol. 68): World Health Organization. Search in Google Scholar

Pfohl-Leszkowicz, A., & Manderville, R. A. (2007). Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Molecular nutrition & food research, 51(1), 61-99.10.1002/mnfr.20060013717195275 Search in Google Scholar

Pierron, A., Alassane-Kpembi, I., & Oswald, I. P. (2016). Impact of mycotoxin on immune response and consequences for pig health. Animal Nutrition, 2(2), 63-68.10.1016/j.aninu.2016.03.001594101629767037 Search in Google Scholar

Robert, H., Payros, D., Pinton, P., Théodorou, V., Mercier-Bonin, M., & Oswald, I. P. (2017). Impact of mycotoxins on the intestine: are mucus and microbiota new targets? Journal of Toxicology and Environmental Health, Part B, 20(5), 249-275.10.1080/10937404.2017.132607128636450 Search in Google Scholar

Shanakhat, H., Sorrentino, A., Raiola, A., Romano, A., Masi, P., & Cavella, S. (2018). Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. Journal of the Science of Food and Agriculture, 98(11), 4003-4013.10.1002/jsfa.893329412472 Search in Google Scholar

Śliżewska, K., Markowiak-Kopeć, P., Sip, A., Lipiński, K., & Mazur-Kuśnirek, M. (2020). The effect of using new synbiotics on the turkey performance, the intestinal microbiota and the fecal enzymes activity in turkeys fed ochratoxin a contaminated feed. Toxins, 12(9), 578.10.3390/toxins12090578755169132916893 Search in Google Scholar

Stoev, S. D., Gundasheva, D., Zarkov, I., Mircheva, T., Zapryanova, D., Denev, S., . . . Mwanza, M. (2012). Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Experimental and Toxicologic Pathology, 64(7-8), 733-741.10.1016/j.etp.2011.01.00821296565 Search in Google Scholar

Taheur, F. B., Fedhila, K., Chaieb, K., Kouidhi, B., Bakhrouf, A., & Abrunhosa, L. (2017). Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International journal of food microbiology, 251, 1-7.10.1016/j.ijfoodmicro.2017.03.02128376398 Search in Google Scholar

Tao, Y., Xie, S., Xu, F., Liu, A., Wang, Y., Chen, D., . . . Wang, X. (2018). Ochratoxin A: Toxicity, oxidative stress and metabolism. Food and Chemical Toxicology, 112, 320-331.10.1016/j.fct.2018.01.00229309824 Search in Google Scholar

Taranu, I., Braicu, C., MARIN, D., Gras, M., Motiu, M., Pistol, G., . . . Berindan-Neagoe, I. (2015). Fusariotoxin Zearalenone affects genome-wide expression at local and systemic level in pig: 149/692. Annals of Nutrition and Metabolism, 67. Search in Google Scholar

Tozlovanu, M., Faucet-Marquis, V., Pfohl-Leszkowicz, A., & Manderville, R. A. (2006). Genotoxicity of the hydroquinone metabolite of ochratoxin A: structure-activity relationships for covalent DNA adduction. Chemical research in toxicology, 19(9), 1241-1247.10.1021/tx060138g16978030 Search in Google Scholar

Tung, K.-K., Chan, C.-K., Zhao, Y., Chan, K.-K. J., Liu, G., Pavlovic, N. M., & Chan, W. (2019). Occurrence and environmental stability of aristolochic acids in groundwater collected from Serbia: links to human exposure and Balkan endemic nephropathy. Environmental science & technology, 54(3), 1554-1561.10.1021/acs.est.9b0533731884786 Search in Google Scholar

Walker, R., & Christian Larsen, J. (2005). Ochratoxin A: previous risk assessments and issues arising. Food additives and contaminants, 22(s1), 6-9.10.1080/0265203050030934316332615 Search in Google Scholar

Wan, J., Chen, B., & Rao, J. (2020). Occurrence and preventive strategies to control mycotoxins in cereal-based food. Comprehensive Reviews in Food Science and Food Safety, 19(3), 928-953.10.1111/1541-4337.1254633331688 Search in Google Scholar

Wang, J.-J., Zhang, R.-Q., Zhai, Q.-Y., Liu, J.-C., Li, N., Liu, W.-X., . . . Shen, W. (2019). Metagenomic analysis of gut microbiota alteration in a mouse model exposed to mycotoxin deoxynivalenol. Toxicology and applied pharmacology, 372, 47-56.10.1016/j.taap.2019.04.00930981666 Search in Google Scholar

Wang, W., Zhai, S., Xia, Y., Wang, H., Ruan, D., Zhou, T., . . . Ye, H. (2019). Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. Microbiome, 7(1), 1-14.10.1186/s40168-019-0761-z688368231779704 Search in Google Scholar

Wu, Q., Dohnal, V., Huang, L., Kuca, K., Wang, X., Chen, G., & Yuan, Z. (2011). Metabolic pathways of ochratoxin A. Current drug metabolism, 12(1), 1-10.10.2174/13892001179452002621222585 Search in Google Scholar

Yang, H., Huang, X., Fang, S., He, M., Zhao, Y., Wu, Z., . . . Huang, L. (2017). Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Frontiers in microbiology, 8, 1555.10.3389/fmicb.2017.01555555953528861066 Search in Google Scholar

Yang, S., Zhang, H., De Saeger, S., De Boevre, M., Sun, F., Zhang, S., . . . Wang, Z. (2015). In vitro and in vivo metabolism of ochratoxin A: a comparative study using ultra-performance liquid chromatography-quadrupole/time-of-flight hybrid mass spectrometry. Analytical and bioanalytical chemistry, 407(13), 3579-3589.10.1007/s00216-015-8570-025772558 Search in Google Scholar

Zhang, Y., Yu, K., Chen, H., Su, Y., & Zhu, W. (2018). Caecal infusion of the short- chain fatty acid propionate affects the microbiota and expression of inflammatory cytokines in the colon in a fistula pig model. Microbial biotechnology, 11(5), 859-868.10.1111/1751-7915.13282611674629856120 Search in Google Scholar

Zhao, J., Bai, Y., Tao, S., Zhang, G., Wang, J., Liu, L., & Zhang, S. (2019). Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model. Journal of Functional Foods, 57, 266-274.10.1016/j.jff.2019.04.009 Search in Google Scholar

eISSN:
2344-4592
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other