Accès libre

Assessment of certain nitrogen metabolism indicators, enteric CH4 and CO2 emitted through manure related to different diets in barrow

À propos de cet article

Citez

Directive 2010/63/EUSearch in Google Scholar

Dourmad, J.Y, Garcia-Launay F., Narcy A. 2017. Pig nutrition: impact on nitrogen, phosphorus, Cu and Zn in pig manure and on emissions of ammonia, greenhouse gas and odours. Batfarm European Workshop Reconciling Livestock Management to the Environment. Mar 2013. Rennes. France. ffhal-01594359f. HAL Id: hal-01594359 https://hal.archives-ouvertes.fr/hal-01594359.Search in Google Scholar

European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)).Search in Google Scholar

FAOSTAT.ORG. http://www.fao.org/faostat/en/#data/QC/visualize.Search in Google Scholar

Habeanu, M., Lefter, N.A., Gheorghe, A., Tabuc, C., Untea, A., Surdu, I., Ciurescu, G., Balan, C.G., Dragomir, C. 2015. Changes in certain serum and faeces parameters in weaned piglets as a response to nutritional stress. S Afr J Anim Sci. 45 (2), 164-172.Search in Google Scholar

Habeanu M., Lefter N.A, Gheorghe A, Tabuc C., Dumitru M, Ciurescu G., Palade M.. 2017. Effects of dietary peas mixed with linseed (3:1) on the growth performance, enteritis and certain serum parameter in weaned piglets. Food and Feed Research. 44 (2), 173-180. DOI: 10.5937/FFR1702173HOpen DOISearch in Google Scholar

Habeanu, M., Lefter, N.A., Gheorghe, A., Untea, A.E., Ropotă, M., Grigore, D.M., Varzaru, I., Toma, S.M. 2019. Evaluation of performance, nitrogen metabolism and tissue composition in barrows fed an n-3 PUFA-rich diet. Animals. 9, 234.Search in Google Scholar

IPCC, 2006. Guidelines for national greenhouse gas inventories.Search in Google Scholar

IPCC, 2007. Climate change 2007: The physical science basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel.Search in Google Scholar

International Commission of Agricultural and Biosystems Engineering (CIGR), 1984.Search in Google Scholar

Jørgensen, H., Theil, P.K., Knudsen, K.E.B. 2011. Enteric Methane Emission from Pigs. Planet Earth 2011–Global Warming Challenges and Opportunities for Policy and Practice. 605-622.10.5772/24377Search in Google Scholar

Kohn, R.A., Dinneen, M.M., Russek-Cohen, E. 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 83, 879–889.10.2527/2005.834879x15753344Search in Google Scholar

Le Goff and J. Noblet. 2001. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci. 79, 2418–2427.Search in Google Scholar

Liu, Z., Powers, W., Liu, H. 2014. Greenhouse gas emissions from swine operations: Evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis. J. Anim. Sci. 91, 4017– 4032. doi: 10.2527/jas2012-6147.Open DOISearch in Google Scholar

Liu, H., Chen, Y., Li, Z., Li, Y., Lai, C., Piao, X., van Milgen, J., Wang, F. 2019. Metabolizable energy requirement for maintenance estimated by regression analysis of body weight gain or metabolizable energy intake in growing pigs. Asian-Australas J Anim Sci. 32, (9), 1397-1406. https://doi.org/10.5713/ajas.17.0898.10.5713/ajas.17.0898672230530744343Search in Google Scholar

Millet, S., Aluwé, M.A., Van den Broeke, Leen, F., De Boever, J., De Campeneere, S. 2018. Review: Pork production with maximal nitrogen efficiency. Animal. 12(5), 1060–1067. doi: 10.1017/S1751731117002610.29065938Open DOISearch in Google Scholar

Monteiro, D.O., Pinheiro, V.M.C., Mourão, J.LM., Rodriguez, M.A.M. 2010. Strategies for mitigation of nitrogen environmental impact from swine production. R. Bras. Zootec. 39, 317-325.Search in Google Scholar

Moreira, I., Fraga, A.L., Paiano, D., Oliveira, G.C., Scapinello, C., Martins, E.N. 2004. Nitrogen balance of starting barrow pigs fed on increasing lysine levels. Braz. Arch. Biol. Techn. 47, 85–91.Search in Google Scholar

Noblet, J., Fortune, H., Shi, X.S., Dubois, S. 1994. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 72, 344–354.Search in Google Scholar

Noblet, J., Bellego, L.L., van Milgen, J., Dubois, S. 2001. Effects of reduced dietary protein level and fat addition on heat production and nitrogen and energy balance in growing pigs. Anim. Res. 50, 227–238.10.1051/animres:2001129Search in Google Scholar

PigGas: Pork Industry Greenhouse Gas Calculator User Guide.Search in Google Scholar

Philippe, F.X., Nicks, B. 2014. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment 199, 10–25. https://doi.org/10.1016/j.agee.2014.08.015.10.1016/j.agee.2014.08.015Search in Google Scholar

Wang, J., Chadwick, D., Cheng, Y., Yan, X. 2018. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci Total Environ. 616–617, 908-917. https://doi.org/10.1016/j.scitotenv.2017.10.229.10.1016/j.scitotenv.2017.10.22929089132Search in Google Scholar

Wang, Y., Junyan, Z., Wang, G., Cai, S., Zeng, X. Qiao, S. 2018. Advances in low-protein diets for swine. J Anim Sci Biotechnol. 9:60. https://doi.org/10.1186/s40104-018-0276-7.10.1186/s40104-018-0276-7605255630034802Search in Google Scholar

White, G.A., Smith, L.A., Haudijk, J.G.M., Homer, D., Kyriazakis, I., Wiseman, J. 2015. Replacement of soya bean meal with peas and faba beans in growing/finishing pig diets: Effect on performance, carcass composition and nutrient excretion. Anim. Feed Sci. Tech. 209, 202– 210.Search in Google Scholar

eISSN:
2344-4592
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other