Accès libre

Drag Coefficient Estimation of Low Density Objects by Free Fall Experiments

À propos de cet article

Citez

J. Lindemuth, The effect of air resistance on falling balls, Am. J. Phys. 39, 757–9, (1971) Search in Google Scholar

A. Vial: Fall with linear drag and Wien’s displacement law: approximate solution and Lambert function, Eur. J. Phys. 33, 751, (2012) Search in Google Scholar

A. Houari, Determining the drag coefficient of rotational symmetric objects falling through liquids, Eur. J. Phys. 33, 947, (2012) Search in Google Scholar

R. Cross, C. Lindsey, Measuring the Drag Force on a Falling Ball, The Physics Teacher 52, 169, (2014) Search in Google Scholar

A. Morrison, An Introduction to Fluid Mechanics, Cambridge University Press, New York, (2013) Search in Google Scholar

P. Timmerman, J. P. van der Weele, On the rise and fall of a ball with linear or quadratic drag, American Journal of Physics 67, (1999), pp. 538-546 Search in Google Scholar

H. Stöcker, Taschenbuch der Physik, Verlag Harri Deutsch, Frankfurt am Main, (1998) Search in Google Scholar

F. M. White: Fluid Mechanics, McGraw-Hill, Seventh Edition, (2011) Search in Google Scholar

L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F. G. Schürmann, M. Wollek, Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag, International Journal of Scientific Research in Mathematical and Statistical Sciences, (2019), Vol.6, Issue 6, pp. 1-13. Search in Google Scholar

I. N. Bronstein, Taschenbuch der Mathematik. B.G.Teubner Stuttgart-Leipzig, (1996) Search in Google Scholar

A. Vodopivec: wxMaxima 18.02.0. http://andrejv.github.io/wxmaxima/ Search in Google Scholar

R. Mehta, F. Alam, A. Subic, Review of tennis ball aerodynamics, Sports Technology. 1:1, (2008), pp. 7-16 Search in Google Scholar