Accès libre

Structural, Electronic, Elastic, Mechanical, Optical and Thermoelectric Properties of the Chalcogenide Double Perovskites A2GaNbS6 (A = Ca, Sr and Ba): Insights From Density Functional Theory Calculations

À propos de cet article

Citez

[1] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”. Inorg. Chem. (2005), 44, 20, 6841–6851. Search in Google Scholar

[2] T. M. Tritt and M.A. Subramanian, MRS Bulletin, “Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View”. (2006),31, 188 Search in Google Scholar

[3] D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, and M. Chiesa, “Photovoltaic-thermoelectric hybrid systems: A general optimization methodology”, Appl. Phys. Lett. (2008), 92, 243503. Search in Google Scholar

[4] Jung, H.S. and Park, N. “Perovskite Solar Cells: From Materials to Devices”. Small. (2015), 11, 10-25. Search in Google Scholar

[5] M. Rull-Bravo, A. Moure, J. F. Fernandez and M. Martin-Gonzalez, “Skutterudites as thermoelectric materials: revisited”. RSC Adv, 5, (2015) 41653. Search in Google Scholar

[6] Vikram, J. Kangsabanik, Enamullah and A. Aftab, “Bismuth based half-Heusler alloys with giant thermoelectric figures of merit”. J. Mater. Chem. A.5 (2017) 6131-6139 Search in Google Scholar

[7] M. Khetir, A. Maafa, F. Boukabrine, H. Rozale. A. Bouab and A. Chahed, “Elastic constants, electronic properties and thermoelectric response of LiAIX (X=C, Si, Ge, and Sn) half-Heusler compounds”, Rev Mex Fisica. 68 (2022) 011002. Search in Google Scholar

[8] M. Grätzel, “The light and shade of perovskite solar cells”. Nat Mater.13, (2014) 838-842. Search in Google Scholar

[9] C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang and Y. Mai, “Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process”. ACS Appl Mater Interfaces. 17 (2015) 9066-9071. Search in Google Scholar

[10] HS. Kim, JY. Seo, NG. Park, “Material and Device Stability in Perovskite Solar Cells”. ChemSusChem. 18, (2016) 2528-2540. Search in Google Scholar

[11] M. Ullah, S. A. Khan, G. Murtaza, R. Khenata, N. Ullah, S. Bin Omran, Electronic, thermoelectric and magnetic properties of La2NiMnO6 and La2CoMnO6, Journal of Magnetism and MagneticMaterials.377, (2015)197-203. Search in Google Scholar

[12] Babayigit, A., Ethirajan, A., Muller, M. et al. “Toxicity of organometal halide perovskite solar cells”. Nature Mater (2016) 15, 247–251. Search in Google Scholar

[13] S. Meenakshi, V. Vijayakumar, S.N. Achary, A.K. Tyagi, “High pressure investigation on double perovskite Ba2MgWO6”, Journal of Physics and Chemistry of Solids, 72, (2011), 609-612. Search in Google Scholar

[14] A.W. Sleight and R. Ward, “Compounds of Heptavalent Rhenium with the Perovskite Structure”, J. Am. Chem. Soc. 83, 5, (1961)1088–1090. Search in Google Scholar

[15] F.K. Patterson, Ca.W. Moeller, and R. Ward, “Magnetic Oxides of Molybdenum(V) and Tungsten(V) with the Ordered Perovskite Structure”, Inorg. Chem. 2, 1, (1963) 196–198. Search in Google Scholar

[16] F. S. Galasso, F. C. Douglas, and R. J. Kasper, “Relationship Between Magnetic Curie Points and Cell Sizes of Solid Solutions with the Ordered Perovskite Structure”, J. Chem. Phys. 44, (1966)1672 Search in Google Scholar

[17] M. T. Anderson, K. B. Greenwood, G. A. Taylor and K. R. Poeppelmeier, “B-Cation Arrangements in Double Perovskites”, Progress in Solid State Chemistry, 22, 3, (1993) 197-233. Search in Google Scholar

[18] K. Ramesha, V. Thangadurai, D. Sutar, S. Subramanyam, G.N. Subbanna, J. Gopalakrishnan, “ALaMnBO6 (A=Ca, Sr, Ba; B=Fe, Ru) double perovskites”, Materials Research Bulletin,35, (2000)559-565. Search in Google Scholar

[19] J. B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, et al “Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca)”, Phys. Rev. B,68, (2003)144431. Search in Google Scholar

[20] Al. Dutta, T. P. Sinha, and S. Shannigrahi, “Dielectric relaxation and electronic structure of double perovskite Sr2FeSbO6,” Journal of Applied Physics,104, (2008) 064114. Search in Google Scholar

[21] H.-R. Fuh, K.-C. Weng, Y.-P. Liu, Y.-K. Wang, J. “New ferromagnetic semiconductor double perovskites: La2FeMO6 (M = Co, Rh, and Ir) “. Alloys Compd. 622 (2015) 657–661. Search in Google Scholar

[22] N. Zu, J. Wang, Y. Wang, Z. Wu, J. “Half metallicity in Sr2CrOsO6 via Na doping”. Alloys Compd. 636 (2015) 257–260. Search in Google Scholar

[23] S. Zhao, C. Lan, J. Ma, S.S. Pandey, S. Hayase, T. Ma, “Research Update: Behind the high efficiency of hybrid perovskite solar cells. “Solid State Commun. 213214 (2015) 19–23. Search in Google Scholar

[24] L. Agiorgousis, Y. Sun, D-H. Choe, D. West and S. Zhang.” Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics”. Adv. Theory Simul. 2, (2019)1800173. Search in Google Scholar

[25] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140, (1965) A1133. Search in Google Scholar

[26] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,” Iterative minimization techniques for ab initio total-Energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys. 64, (1992) 1045. Search in Google Scholar

[27] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L.D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids”, J. Chem. Phys. 152, (2020) 074101. Search in Google Scholar

[28] U.V. Barth and L. Hedin, “A local exchange-correlation potential for the spin polarized case. i”, J. Phys. C: Solid State Phys.5, (1972)1629. Search in Google Scholar

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 78, (1997)1396. Search in Google Scholar

[30] A. R. Jishi, B. Oliver and A. Sharif, “Modeling of Lead Halide Perovskites for Photovoltaic Applications”, J. Phys. Chem. C, 118, (2021)28344-28349. Search in Google Scholar

[31] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations”, Phys. Rev. B. 13, (1976) 5188. Search in Google Scholar

[32] D. Becke and M. R. Roussel, “Exchange holes in inhomogeneous systems: A coordinate-space model”, Phys. Rev. 39, (1989) 3761. Search in Google Scholar

[33] G. K. H. Madsen, and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun., 175(2006)67. Search in Google Scholar

[34] A. E. Fedorovskiy, N. A. Drigo, M.K. Nazeeruddin, “The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range”, Small Methods (2019) 1900426–1900432. Search in Google Scholar

[35] S. A. Khandy and D. C. Gupta, “Magneto-electronic, Mechanical, Thermoelectric and Thermodynamic Properties of Ductile Perovskite Ba2SmNbO6”. Mater. Chem. Phys., 239, (2020)121983. Search in Google Scholar

[36] Wyckoff, W. G. Ralph, The analytical expression of the results of the theory of space-groups, Carnegie Institute of Washington, Washington, 318. Search in Google Scholar

[37] V. G. Tyuterev and N. Vast, “Murnaghan’s Equation of State for the Electronic Ground State Energy,” Computational Materials Science, (2006),350353. Search in Google Scholar

[38] M. J. Mehl, J. E. Osburn, D. A. Papaconstantopoulos, and B. M. Klein, “Structural properties of ordered high-melting- temperature intermetallic alloys from first-principles total- energy calculations”. Phy. Rev. B, 41 (1990) 10311. Search in Google Scholar

[39] M. Born, “In on the Stability of Crystal Lattices”. Cambridge University Press, 1940, p. 160. Search in Google Scholar

[40] M. Dacorogna, J.s. Ashkenazi, M. Peter, “Ab initio calculation of the tetragonal shear moduli of the cubic transition metals”, Phy. Rev. B.26 (1982) 1527. Search in Google Scholar

[41] Seh AQ, Gupta DC. “Exploration of highly correlated co- based quaternary Heusler alloys for spintronics and thermoelectric applications”. Int J Energy Res.43 (2019) 8864-8877. Search in Google Scholar

[42] B. Benichou, Z. Nabi, B. Bouabdallah, H. Bouchenafa. “Ab initio investigation of the electronic structure, elastic and magnetic properties of quaternary Heusler alloy Cu2MnSn1−xInx (x = 0, 0.25, 0.5, 0.75, 1)”. Rev Mex Fis 64, (2018) 135. Search in Google Scholar

[43] M. E. Fine, L. D. Brown, and H. L. Marcus, “Elastic constants versus melting temperature in metals”. Scr. Mettal, 18 (1984) 951. Search in Google Scholar

[44] H. Ehrenreich and M. H. Cohen, “Self-Consistent Field Approach to the Many-Electron Problem”, Phys. Rev. 115, (1959) 786. Search in Google Scholar

[45] John S. Toll, “Causality and the Dispersion Relation: Logical Foundations”, Phys. Rev. 104, (1956) 1760-1770. Search in Google Scholar

[46] R. M. A. Azzam and A. M. El-Saba, “Reflectance of an absorbing substrate for incident light of arbitrary polarization: appearance of a secondary maximum at oblique incidence”, Appl. Opt.27,(1988)4034-4037. Search in Google Scholar

[47] B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said and R. Ahmad, “Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications”, Journal of Applied Physics,109, (20113) 023109. Search in Google Scholar

[48] G. Madsen,D. J.Singh, BoltzTraP. “A code for calculating band-structure dependent quantities”, Computer Physics Communications,175, (2006) 67-71. Search in Google Scholar

[49] G. A. Slack, “Nonmetallic crystals with high thermal conductivity”, J. Phys. Chem. Solids, 34 (1973) 321. Search in Google Scholar