Accès libre

L(3, 2, 1)-Labeling of Banana Trees

,  et   
21 déc. 2020
À propos de cet article

Citez
Télécharger la couverture

An L(3, 2, 1)-labeling of a graph G is an assignment f from the vertex set V (G) to the set of non-negative integers such that |f (x) − f (y) | ≥ 3 if x and y are adjacent, | f (x) − f (y) | ≥ 2 if x and y are at distance 2, and | f (x) − f (y) | ≥ 1 if x and y are at distance 3, for all x and y in V (G). The L (3, 2, 1)-labeling number k (G) of G is the smallest positive integer k such that G has an L (3, 2, 1)-labeling with k as the maximum label. In this paper, we consider banana trees of type 1, banana trees of type 2 and path-union of t-copies of the star K1,n and find the k-numbers of them.

Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Mathématiques, Mathématiques générales