A Remark on Continuity of Positive Linear Functionals on Separable Banach *-Algebras
22 janv. 2014
À propos de cet article
Publié en ligne: 22 janv. 2014
Pages: 3 - 5
DOI: https://doi.org/10.2478/awutm-2013-0011
Mots clés
This content is open access.
Using a variation of the Murphy-Varopoulos Theorem, we give a new proof of the following R. J. Loy Theorem: Let A be a separable Banach *-algebra with center Z such that ZA has at most countable codimension, then every positive linear functional on A is continuous.