On a new one-parameter generalization of dual-complex Jacobsthal numbers
, et
26 août 2021
À propos de cet article
Publié en ligne: 26 août 2021
Pages: 127 - 144
Reçu: 21 déc. 2020
DOI: https://doi.org/10.2478/ausm-2021-0007
Mots clés
© 2021 Dorota Bród et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In this paper we define dual-complex numbers with generalized Jacobsthal coefficients. We introduce one-parameter generalization of dual-complex Jacobsthal numbers - dual-complex r-Jacobsthal numbers. We investigate some algebraic properties of introduced numbers, among others Binet type formula, Catalan, Cassini, d’Ocagne and Honsberger type identities. Moreover, we present the generating function, summation formula and matrix generator for these numbers. The results are generalization of the properties for the dual-complex Jacobsthal numbers.