On the metric dimension of strongly annihilating-ideal graphs of commutative rings
,  et  Â
02 déc. 2020
Ă propos de cet article
Publié en ligne: 02 déc. 2020
Pages: 358 - 369
Reçu: 23 févr. 2020
DOI: https://doi.org/10.2478/ausm-2020-0025
Mots clés
© 2020 V. Soleymanivarniab et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Let đ be a commutative ring with identity and đ(đ) be the set of ideals with non-zero annihilator. The strongly annihilating-ideal graph of đ is defined as the graph SAG(đ) with the vertex set đ (đ)* = đ (đ) \{0} and two distinct vertices I and J are adjacent if and only if I â© Ann(J) â (0) and J â© Ann(I) â (0). In this paper, we study the metric dimension of SAG(đ) and some metric dimension formulae for strongly annihilating-ideal graphs are given.