Accès libre

An efficient numerical method for solving nonlinear Thomas-Fermi equation

À propos de cet article

Citez

[1] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second Edition, DOVER Publications, Mineola, New York, (2000).Search in Google Scholar

[2] W. Bu,Y. Ting, Y. Wu, J. Yang, Finite difference/finite element method for two-dimensional space and time fractional blochtorrey equations, J. Comput. Phys., 293 (2015), 264–279.10.1016/j.jcp.2014.06.031Search in Google Scholar

[3] K. Parand, S. Abbasbandy, S. Kazem, A. R. Rezaei, An improved numerical method for a class of astrophysics problems based on radial basis functions, Phys. Scripta, 83 (1) (2011), 015011, 11 pages.10.1088/0031-8949/83/01/015011Search in Google Scholar

[4] K. Parand, M. Hemami, Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function, Int. J. Appl. Comput. Math., 3 (2) (2017), 1053–1075.10.1007/s40819-016-0161-zSearch in Google Scholar

[5] R. Franke, Scattered data interpolation: Tests of some methods, Math. Comput., 38 (1982), 181–200.10.1090/S0025-5718-1982-0637296-4Search in Google Scholar

[6] J. A. Rad, K. Parand, Pricing American options under jump-diffusion models using local weak form meshless techniques, Int. J. Comp. Math., (2016) 10.1080/00207160.2016.1227434.Search in Google Scholar

[7] J. A. Rad, K. Parand, Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method, Appl. Numer. Math., 115 (2017), 252–274.10.1016/j.apnum.2017.01.015Search in Google Scholar

[8] K. Parand, P. Mazaheri, M. Delkhosh, A. Ghaderi, New numerical solutions for solving Kidder equation by using the rational Jacobi functions, SeMA J., (2017) doi:10.1007/s40324-016-0103-z.10.1007/s40324-016-0103-zSearch in Google Scholar

[9] K. Parand, M. Nikarya, J. A. Rad, Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method, Celest. Mech. Dyn. Astr., 116 (2013), 97–107.10.1007/s10569-013-9477-8Search in Google Scholar

[10] D. Funaro and O. Kavian, approximation of some diffusion evolution equations in unbounded domains by Hermite functions, Math. Comput., 57 (1991), 597–619.10.1090/S0025-5718-1991-1094949-XSearch in Google Scholar

[11] B. Y. Guo, J. Shen, Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math. 86(4) (2000), 635–654.10.1007/PL00005413Search in Google Scholar

[12] B. Y. Guo, Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations, J. Math. Anal. Appl., 243 (2000), 373–408.10.1006/jmaa.1999.6677Search in Google Scholar

[13] J. A. Rad, K. Parand, L. V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl. Math. Comput., 251 (2015), 363–377.10.1016/j.amc.2014.11.016Search in Google Scholar

[14] J. A. Rad, K. Parand, S. Abbasbandy, Pricing European and American Options Using a Very Fast and Accurate Scheme: The Meshless Local Petrov-Galerkin Method, P. Natl Acad. Sci. India Section A: Phys. Sci., 85 (3) (2015), 337–351.10.1007/s40010-015-0207-3Search in Google Scholar

[15] M. Delkhosh, M. Delkhosh, M. Jamali, Introduction to Green’s Function and its Numerical Solution, Middle-East J. Sci. Res., 11 (7) (2012), 974–981.10.1155/2012/180806Search in Google Scholar

[16] J. P. Boyd,Orthogonal rational functions on a semi-infinite interval, J.Comput. Phys., 70 (1987), 63–88.10.1016/0021-9991(87)90002-7Search in Google Scholar

[17] K. Parand, M. Dehghan, F. Baharifard, Solving a laminar boundary layer equation with the rational Gegenbauer functions, Appl. Math. Model., 37 (2013), 851–863.10.1016/j.apm.2012.02.041Search in Google Scholar

[18] J. A. Rad, S. Kazem, M. Shaban, K. Parand, A. Yildirim, Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials, Math. Method. Appl. Sci., 37 (3) (2014), 329–342.10.1002/mma.2794Search in Google Scholar

[19] K. Parand, L. Hossein, Numerical approach of flow and mass transfer on nonlinear stretching sheet with chemically reactive species using rational Jacobi collocation method, Int. J. Numer. Method. H. F. F., 23 (5) (2013), 772–789.10.1108/HFF-06-2011-0146Search in Google Scholar

[20] F. Baharifard, S. Kazem, K. Parand, Rational and Exponential Legendre Tau Method on Steady Flow of a Third Grade Fluid in a Porous Half Space, Int. J. Appl. Comput. Math., 2 (4) (2016), 679–698.10.1007/s40819-015-0096-9Search in Google Scholar

[21] K. Parand, S. Khaleqi, The rational Chebyshev of Second Kind Collocation Method for Solving a Class of Astrophysics Problems, Eur. Phys. J. Plus, 131 (24), (2016).10.1140/epjp/i2016-16024-8Search in Google Scholar

[22] L. H. Thomas, The calculation of atomic fields, Math. Proc. Cambridge, 23 (1927), 542–548.10.1017/S0305004100011683Search in Google Scholar

[23] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1967.Search in Google Scholar

[24] E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigen-schaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Z. Phys., 48 (1928), 73–79.10.1007/BF01351576Search in Google Scholar

[25] R. P. Feynman, N. Metropolis, E. Teller, Equations of State of Elements Based on the Generalized Fermi-Thomas Theory, Phys. Rev., 75 (10) (1949), 1561–1573.10.1103/PhysRev.75.1561Search in Google Scholar

[26] J. C. Slater, H. M. Krutter, The Thomas-Fermi method for metals, Phys. Rev., 47 (1935), 559–568.10.1103/PhysRev.47.559Search in Google Scholar

[27] B. J. Laurenzi, An analytic solution to the Thomas-Fermi equation, J. Math. Phys., 10 (1990), 2535–2537.10.1063/1.528998Search in Google Scholar

[28] A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Method. Part. D. E., 26 (1) (2010), 239–252.10.1002/num.20442Search in Google Scholar

[29] A. H. Bhrawy, A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 26 (2013), 25–31.10.1016/j.aml.2012.01.027Search in Google Scholar

[30] K. Parand, M. Delkhosh, M. Nikarya, Novel orthogonal functions for solving differential equations of arbitrary order, Tbilisi Math. J., 10 (1) (2017), 31–5510.1515/tmj-2017-0004Search in Google Scholar

[31] K. Parand, M. Delkhosh, Operational Matrices to Solve Nonlinear Volterra-Fredholm Integro-Differential Equations of Multi-Arbitrary Order, Gazi Uni. J. Sci., 29 (4) (2016), 895–907.Search in Google Scholar

[32] R. E. Bellman, R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier Publishing Company, New York, 1965.10.1109/TAC.1965.1098135Search in Google Scholar

[33] R. Kalaba, On nonlinear differential equations, the maximum operation and monotone convergence, RAND Corporation, P-1163, 1957.Search in Google Scholar

[34] K. Parand, M. Delkhosh, An Efficient Numerical Solution of Nonlinear Hunter-Saxton Equation, Commun. Theor. Phy., 67 (5) (2017), 483–49210.1088/0253-6102/67/5/483Search in Google Scholar

[35] R. Krivec, V. B. Mandelzweig, Quasilinearization approach to computations with singular potentials, Comput. Phys. Comm., 179 (12) (2008), 865–867.10.1016/j.cpc.2008.07.006Search in Google Scholar

[36] E. Z. Liverts, V. B. Mandelzweig, Analytical computation of amplification of coupling in relativistic equations with Yukawa potential, Ann. Phys-New York, 324 (2) (2009), 388–407.10.1016/j.aop.2008.08.004Search in Google Scholar

[37] K. Parand, M. M. Moayeri, S. Latifi, M. Delkhosh, A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions, Euro. Phy. J. Plus, 132 (7) (2017), 325.10.1140/epjp/i2017-11600-0Search in Google Scholar

[38] V. B. Mandelzweig, F. Tabakinb, Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Commun., 141 (2001), 268–281.10.1016/S0010-4655(01)00415-5Search in Google Scholar

[39] E. B. Baker, The application of the Fermi-Thomas statistical model to the calculation of potential distribution in positive ions, Quart. Appl. Math., 36 (1930), 630–647.10.1103/PhysRev.36.630Search in Google Scholar

[40] N. A. Zaitsev, I. V. Matyushkin, D. V. Shamonov, Numerical Solution of the Thomas-Fermi Equation for the Centrally Symmetric Atom, Russ. Microelectronics, 33 (2004), 303–309.10.1023/B:RUMI.0000043047.02416.47Search in Google Scholar

[41] V. Bush, S. H. Caldwell, Thomas-Fermi equation solution by the differential analyzer, Phys. Rev., 38 (1931), 1898–1902.10.1103/PhysRev.38.1898Search in Google Scholar

[42] C. Miranda, Teorie e metodi per l’integrazione numerica dell’equazione differenziale di Fermi, Memorie della Reale Accademia d’Italia, Classe di scienze fisiche, Math. Nat., 5 (1934), 285–322.Search in Google Scholar

[43] S. Kobayashi, T. Matsukuma, S. Nagi, K. Umeda, Accurate value of the initial slope of the ordinary T-F function, J. Phys. Soc. Japan, 10 (1955), 759–762.10.1143/JPSJ.10.759Search in Google Scholar

[44] J. C. Mason, Rational approximations to the ordinary Thomas-Fermi function and its derivative, Proc. Phys. Soc., 84 (1964), 357–359.10.1088/0370-1328/84/3/304Search in Google Scholar

[45] B. J. Laurenzi, An analytic solution to the Thomas-Fermi equation, J. Math. Phys., 31 (1990) 2535-2537.10.1063/1.528998Search in Google Scholar

[46] A. J. MacLeod, Chebyshev series solution of the Thomas-Fermi equation, Comput. Phys. Commun., 67 (1992), 389–391.10.1016/0010-4655(92)90047-3Search in Google Scholar

[47] A-M. Wazwaz, The modified decomposition method and Pade approximates for solving the Thomas-Fermi equation, Appl. Math. Comput., 105 (1999), 11–19.10.1016/S0096-3003(98)10090-5Search in Google Scholar

[48] L. N. Epele, H. Fanchiotti, C. A. G. Canal, J. A. Ponciano, Pade approximate approach to the Thomas-Fermi problem, Phys. Rev. A, 60 (1999), 280–283.10.1103/PhysRevA.60.280Search in Google Scholar

[49] S. Esposito, Majorana solution of the Thomas-Fermi equation, Am. J.Phys., 70 (2002), 852–856.10.1119/1.1484144Search in Google Scholar

[50] S. Liao, An explicit analytic solution to the Thomas-Fermi equation, Appl. Math. Comput., 144 (2003), 495–506.10.1016/S0096-3003(02)00423-XSearch in Google Scholar

[51] H. Khan, H. Xu, Series solution to the Thomas-Fermi equation, Phys. Let. A, 365 (2007), 111–115.10.1016/j.physleta.2006.12.064Search in Google Scholar

[52] A. El-Nahhas, Analytic Approximations for Thomas-Fermi Equation, Acta Phys. Pol. A, 114 (4) (2008), 913–918.10.12693/APhysPolA.114.913Search in Google Scholar

[53] B. Yao, A series solution to the Thomas-Fermi equation, Appl. Math. Comput., 203 (2008), 396–401.10.1016/j.amc.2008.04.050Search in Google Scholar

[54] K. Parand, M. Shahini, Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation, Phys. Let. A, 373 (2009), 210–213.10.1016/j.physleta.2008.10.044Search in Google Scholar

[55] V. Marinca, N. Herisanu, An optimal iteration method with application to the Thomas-Fermi equation, Cent. Eur. J. Phys., 9 (2011), 891–895.10.2478/s11534-010-0059-zSearch in Google Scholar

[56] M. Oulne, Variation and series approach to the Thomas-Fermi equation, Appl. Math. Comput., 218 (2011), 303–307.10.1016/j.amc.2011.05.064Search in Google Scholar

[57] S. Abbasbandy, C. Bervillier, Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Appl. Math. Comput., 218 (2011), 2178–2199.10.1016/j.amc.2011.07.035Search in Google Scholar

[58] F. M. Fernandez, Rational approximation to the Thomas-Fermi equations, Appl. Math. Comput., 217 (2011), 6433–6436.10.1016/j.amc.2011.01.049Search in Google Scholar

[59] S. Zhu, H. Zhu, Q. Wu, Y. Khan, An adaptive algorithm for the Thomas-Fermi equation, Numer. Algor., 59 (2012), 359–372.10.1007/s11075-011-9494-1Search in Google Scholar

[60] M. Turkyilmazoglu, Solution of the Thomas-Fermi equation with a convergent approach, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4097–4103.10.1016/j.cnsns.2012.01.030Search in Google Scholar

[61] Y. Zhao, Z. Lin, Z. Liu, S. Liao, The improved homotopy analysis method for the Thomas-Fermi equation, Appl. Math. Comput., 218 (2012), 8363–8369.10.1016/j.amc.2012.02.004Search in Google Scholar

[62] J. P. Boyd, Rational Chebyshev series for the Thomas-Fermi function: Endpoint singularities and spectral methods, J. Comput. Appl. Math., 244 (2013), 90–101.10.1016/j.cam.2012.11.015Search in Google Scholar

[63] K. Parand, M. Dehghanb, A. Pirkhedri, The Sinc-collocation method for solving the Thomas-Fermi equation, J. Comput. Appl. Math., 237 (2013), 244–252.10.1016/j.cam.2012.08.001Search in Google Scholar

[64] V. Marinca, R. D. Ene, Analytical approximate solutions to the Thomas-Fermi equation, Cent. Eur. J. Phys., 12 (7) (2014), 503–510.10.2478/s11534-014-0472-9Search in Google Scholar

[65] A. Kilicman, I. Hashimb, M. Tavassoli Kajani, M. Maleki, On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math., 257 (2014), 79–85.10.1016/j.cam.2013.07.050Search in Google Scholar

[66] R. Jovanovic, S. Kais, F. H. Alharbi, Spectral Method for Solving the Nonlinear Thomas-Fermi Equation Based on Exponential Functions, J. App. Math., 2014 (2014), Article ID 168568, 8 pages.10.1155/2014/168568Search in Google Scholar

[67] F. Bayatbabolghani, K. Parand, Using Hermite Function for Solving Thomas-Fermi Equation, Int. J. Math. Comput. Phys. Elect. Comp. Eng., 8(1) (2014), 123–126.Search in Google Scholar

[68] P. Amore, J. P. Boyd, F. M. Fernandez, Accurate calculation of the solutions to the Thomas-Fermi equations, Appl. Math. Comput., 232 (2014), 929–943.10.1016/j.amc.2014.01.137Search in Google Scholar

[69] H. Fatoorehchi, H. Abolghasemi, An Explicit Analytic Solution to the Thomas-Fermi Equation by the Improved Differential Transform Method, Acta Phys. Pol. A, 125 (5) (2014), 1083–1087.10.12693/APhysPolA.125.1083Search in Google Scholar

[70] C. Liu, S. Zhu, Laguerre pseudospectral approximation to the Thomas-Fermi equation, J. Comput. Appl. Math., 282 (2015), 251–261.10.1016/j.cam.2015.01.004Search in Google Scholar

[71] K. Parand, H. Yousefi, M. Delkhosh, A. Ghaderi, A Novel Numerical Technique to Obtain an Accurate Solution of the Thomas-Fermi Equation, Eur. Phys. J. Plus, 131 (2016), 228.10.1140/epjp/i2016-16228-xSearch in Google Scholar

[72] K. Parand, A. Ghaderi, M. Delkhosh, H. Yousefi, A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions, Electron. J. Differential Equations, 2016 (331) (2016), 1–18.Search in Google Scholar

[73] K. Parand, M. Delkhosh, Accurate solution of the Thomas-Fermi equation using the fractional order of rational Chebyshev functions, J. Comput. Appl. Math., 317 (2017), 624–642.10.1016/j.cam.2016.11.035Search in Google Scholar

[74] K. Parand, M. Delkhosh, New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi Differential Equation, Bull. Belg. Math. Soc. Simon Stevin, 24 (3) (2017), 457–476.10.36045/bbms/1506477694Search in Google Scholar

eISSN:
2066-7752
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathematics, General Mathematics