Accès libre

A feature selection strategy using Markov clustering, for the optimization of brain tumor segmentation from MRI data

À propos de cet article

Citez

[1] S.B.Akers, Binary decision diagrams, IEEE Transactions on Computers C-27 (1978) 509–516. ⇒319, 32110.1109/TC.1978.1675141 Search in Google Scholar

[2] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, M. Prastawa, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv (2019) 1181.02629v2. ⇒318, 319 Search in Google Scholar

[3] S.R. Chandaran, G. Muthusamy, L.R. Sevalaiappan, N. Senthilkumaran, Deep learning-based transfer learning model in diagnosis of diseases with brain magnetic resonance imaging, Acta Polytechnica Hungarica 19, 5 (2022) 127–147. ⇒ 31810.12700/APH.19.5.2022.5.7 Search in Google Scholar

[4] Y.K. Chang, Z.Z. Zheng, Y.W. Sun, M.M. Zhao, Y. Lu, Y. Zhang, DPAFNet: A residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation Biomedical Signal Processing and Control 79 (2023) 104037. ⇒31810.1016/j.bspc.2022.104037 Search in Google Scholar

[5] N. Gordillo, E. Montseny, P. Sobrevilla, State of the art survey on MRI brain tumor segmentation, Magnetic Resonance Imaging 31 (2013) 1426–1438. ⇒31710.1016/j.mri.2013.05.00223790354 Search in Google Scholar

[6]Á. Győrfi, L. Szilágyi, L. Kovács, A fully automatic procedure for brain tumor segmentation from multi-spectral MRI records using ensemble learning and atlas-based data enhancement, Applied Sciences 11 (2021) 564. ⇒319, 320, 322, 32310.3390/app11020564 Search in Google Scholar

[7]Á. Győrfi, L. Kovács, L. Szilágyi, A feature ranking and selection algorithm for brain tumor segmentation in multi-spectral magnetic resonance image data, Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC) (2019) 804–807. ⇒31810.1109/EMBC.2019.8857794 Search in Google Scholar

[8] A. Islam, S. M. S. Reza, K. M. Iftekharuddin, Multifractal texture estimation for detection and segmentation of brain tumors, IEEE Transactions on Biomedical Engineering 60 (2013) 3204–3215. ⇒31810.1109/TBME.2013.2271383512698023807424 Search in Google Scholar

[9] K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Medical Image Analysis 36 (2017), 61–78. ⇒31810.1016/j.media.2016.10.00427865153 Search in Google Scholar

[10] A. Kőble,Á. Győrfi, Sz. Csaholczi, B. Surányi, L. Dénes-Fazakas, L. Kovács, L. Szilágyi, Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data, IEEE AFRICON (2021) 71–76. ⇒32010.1109/AFRICON51333.2021.9570990 Search in Google Scholar

[11] L. Lefkovits, S. Lefkovits, L. Szilágyi, Brain tumor segmentation with optimized random forest, International MICCAI Brainlesion Workshop, Lecture Notes in Computer Science 10154 (2017) 88–99. ⇒31810.1007/978-3-319-55524-9_9 Search in Google Scholar

[12] S. Lefkovits, L. Lefkovits, L. Szilágyi, Applications of different CNN architectures for palm vein identification, Modeling Decisions for Artificial Intelligence (MDAI), Lecture Notes in Computer Science 11676 (2019) 295-306. ⇒31810.1007/978-3-030-26773-5_26 Search in Google Scholar

[13] S. Lefkovits, L. Lefkovits, L. Szilágyi, HGG and LGG brain tumor segmentation in multi-modal MRI using pretrained convolutional neural networks of Amazon Sagemaker, Applied Sciences 12 (2022) 3620. ⇒31810.3390/app12073620 Search in Google Scholar

[14] H.X. Liu, G.Q. Huo, Q. Li, X. Guan, M.L. Tseng, Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation, Expert Systems with Applications 214 (2023) 119166. ⇒31810.1016/j.eswa.2022.119166 Search in Google Scholar

[15] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Transactions on Medical Imaging 34, 10 (2015) 1993–2024. ⇒318, 31910.1109/TMI.2014.2377694 Search in Google Scholar

[16] G. Mohan, M.M. Subashini, MRI based medical image analysis: Survey on brain tumor grade classification, Biomedical Signal Processing and Control 39 (2018) 139-161. ⇒31710.1016/j.bspc.2017.07.007 Search in Google Scholar

[17] Cs.S. Nagy, Optimization of a tumor recognition algorithm (Hungarian), MSc thesis, Sapientia University, Romania, 2022. ⇒323 Search in Google Scholar

[18] T.Ö. Onur, Improved image denoising using wavelet edge detection based on Otsu’s thresholding, Acta Polytechnica Hungarica 19, 2 (2022) 79–92. ⇒32110.12700/APH.19.2.2022.2.5 Search in Google Scholar

[19] L. G. Nyúl, J. K. Udupa, X. Zhang, New variants of a method of MRI scale standardization, IEEE Trans. Med. Imaging 19, 2 (2010) 143–150. ⇒32010.1109/42.83637310784285 Search in Google Scholar

[20] A. Phophalia, P. Maji, Multimodal brain tumor segmentation using ensemble of forest method, Proc. 3rd International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries(BraTS MICCAI 2017, Quebec City), Lecture Notes in Computer Science 10670 (2018) 159–168. ⇒ 31810.1007/978-3-319-75238-9_14 Search in Google Scholar

[21] A. Pinto, S. Pereira, D. Rasteiro, C. A. Silva, Hierarchical brain tumour segmentation using extremely randomized trees, Pattern Recognition 82 (2018) 105–117. ⇒31810.1016/j.patcog.2018.05.006 Search in Google Scholar

[22] J.M. Pisak-Lukáts, L. Szilágyi, Markov clustering based feature selection for brain tumor segmentation from multi-spectral MRI records, 20th Jubilee IEEE World Symposium on Applied Machine Intelligence and Informatics (SAMI) (2022) 165–170. ⇒31810.1109/SAMI54271.2022.9780855 Search in Google Scholar

[23] R. Ranjbarzadeh, A. Caputo, E.B. Tirkolaee, S.J. Ghoushchi, M. Bendechache, Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools, Computers in Biology and Medicine 152 (2023) 106405. ⇒31710.1016/j.compbiomed.2022.10640536512875 Search in Google Scholar

[24] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computation and Computer Assisted Interventions (MICCAI), Lecture Notes in Computer Science 9351 (2015) 234–241. ⇒31810.1007/978-3-319-24574-4_28 Search in Google Scholar

[25] J. G. Sled,A.P.Zijdenbos,A.C.Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging 17, 1 (1998) 87–97. ⇒32010.1109/42.6686989617910 Search in Google Scholar

[26] L. Szilágyi, D. Iclănzan, Z. Kapás,Z.Szabó,Á. Győrfi, L. Lefkovits, Low and high grade glioma segmentation in multispectral brain MRI data. Acta Universitatis Sapientiae, Informatica 10 (2018) 110–132. ⇒319, 320, 321, 32210.2478/ausi-2018-0007 Search in Google Scholar

[27] L. Szilágyi, L. Medvés, S. M. Szilágyi, A modified Markov clustering approach to unsupervised classification of protein sequences, Neurocomputing 73, 13–15 (2010) 2332-2345. ⇒32510.1016/j.neucom.2010.02.023 Search in Google Scholar

[28] L. Szilágyi, S. M. Szilágyi, A modified two-stage Markov clustering algorithm for large and sparse networks, Computer Methods and Programs in Biomedicine 135 (2016) 15–26. ⇒32510.1016/j.cmpb.2016.07.00727586476 Search in Google Scholar

[29] L. Szilágyi, S.M. Szilágyi, B. Benyó, Efficient inhomogeneity compensation using fuzzy c-means clustering models. Computer Methods and Programs in Biomedicine 108 (2012) 80–89. ⇒32010.1016/j.cmpb.2012.01.005 Search in Google Scholar

[30] S. M. Szilágyi, L. Szilágyi, A fast hierarchical clustering algorithm for large-scale protein sequence data sets, Computers in Biology and Medicine 48 (2014) 94–101. ⇒32510.1016/j.compbiomed.2014.02.01624657908 Search in Google Scholar

[31] A. Tahir, M. Asif, M. Bin Ahmad, T. Mahmood, M.A. Khan, M. Ali, Brain tumor detection using decision-based fusion empowered with fuzzy logic, Mathematical Problems in Engineering 2022 (2022) 2710285. ⇒31710.1155/2022/2710285 Search in Google Scholar

[32] U. Vovk, F. Pernu˘s, B. Likar, A review of methods for correction of intensity inhomogeneity in MRI, IEEE Trans. Med. Imaging 26 (2007) 405–421. ⇒32010.1109/TMI.2006.89148617354645 Search in Google Scholar

eISSN:
2066-7760
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Computer Sciences, other