À propos de cet article

Citez

[1] Abujabhah, I. S., Bound, S. A., Doyle, R., Bowman, J. P., Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98. (2016) 243–253.10.1016/j.apsoil.2015.10.021Search in Google Scholar

[2] Béni, A., Soki, E., Lajtha, K., Fekete, I., An optimized HPLC method for soil fungal biomass determination and its application to a detritus manipulation study. Journal of Microbiological Methods, 103. (2014) 124–130.10.1016/j.mimet.2014.05.02224918988Search in Google Scholar

[3] Borowik, A., Wyszkowska, J., Remediation of soil contaminated with diesel oil. Journal of Elementology, 23. (2018) 767–788.10.5601/jelem.2018.23.1.1583Search in Google Scholar

[4] Brady, N. C., Weil, R. R., The nature and properties of soils. 14th ed. Pearson Prentice Hall, Upper Saddle River, NJ (2008).Search in Google Scholar

[5] Bridgwater, A. V., IEA Bioenergy Update 27: Biomass Pyrolysis. Biomass and Bioenergy, 31. (2007) 1–5.Search in Google Scholar

[6] Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., Ball, W. P., Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry, 37. (2007) 321–333.10.1016/j.orggeochem.2005.10.008Search in Google Scholar

[7] Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S., Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45. (2008) 629–634.10.1071/SR07109Search in Google Scholar

[8] Cocozza, C., Baronti, S., Amendola, C., Vaccari, F. P., Lustrato, G., Lonardo, S. D., Fantasma, F., Tognetti, R., Scippa, G. S., The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy (2017).10.1155/2017/3158207Search in Google Scholar

[9] Czimczik, C. I., Masiello, C. A., Controls on black carbon storage in soils. Global Biogeochemical Cycles, 21. (2007).10.1029/2006GB002798Search in Google Scholar

[10] Di Blasi, C., Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, 34. (2008) 47–90.10.1016/j.pecs.2006.12.001Search in Google Scholar

[11] Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zheng, B., Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36. (2016).10.1007/s13593-016-0372-zSearch in Google Scholar

[12] Downie, A., Munroe, P., Crosky, A., Characteristics of biochar – Physical and structural properties. In: Lehmann J., Joseph S. (eds.), Biochar for environmental management: Science and technology. Earthscan, London (2009) 13–29.Search in Google Scholar

[13] Elmer, W., White, J. C., Pignatello, J. J., Impact of biochar addition to soil on the bioavailability of chemicals important in agriculture. Report. New Haven: University of Connecticut (2010).Search in Google Scholar

[14] Elmer, W. H., Pignatello, J. J., Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95. (2011) 960–966.10.1094/PDIS-10-10-074130732119Search in Google Scholar

[15] Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., Senior, E., Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 42. (2012) 2311–2364.Search in Google Scholar

[16] Fekete, I., Varga, Cs., Nagy, P. T, Tóth, J. A., Kotroczó, Zs., Effect of detritus input on some soil nutrients concentrations in a Central European deciduous forest. In: Rıdvan, K., Coşkun, G. (eds.), Book of Proceedings: 9thInternational Soil Science Congress onThe Soul of Soil and Civilization”, 14–16 October 2014, Side, Antalya/Turkey (2014) 461–467.Search in Google Scholar

[17] Fischer, D., Glaser, B., Synergisms between compost and biochar for sustainable soil amelioration. In: Kumar, S., Bharti, A. (eds.), Management of organic waste. IntechOpen (2012) 167–198.Search in Google Scholar

[18] Glaser, B., Haumaier, L., Guggenberger, G., Zech, W., Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Organic Geochemistry, 29. (1998) 811–819.Search in Google Scholar

[19] Gorovtsov, A. V., Minkina, T. M., Mandzhieva, S. S., Perelomov, L. V., Soja, G., Zamulina, I. V., Yao, J., The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 1–24. (2019).10.1007/s10653-019-00412-5Search in Google Scholar

[20] Hardy, B., Sleutel, S., Dufey, J. E., Cornelis, J. T., The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management. Frontiers in Environmental Science, 7. 110. (2019).10.3389/fenvs.2019.00110Search in Google Scholar

[21] Kaal, J., Brodowski, S., Baldock, J. A., Nierop, K. G., Cortizas, A. M., Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry, 39. (2008) 1415–1426.10.1016/j.orggeochem.2008.06.011Search in Google Scholar

[22] Kim, E. J., Oh, J. E., Chang, Y. S., Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Science of the Total Environment, 311. (2003) 177–189.10.1016/S0048-9697(03)00095-0Search in Google Scholar

[23] Kocsis, T., Biró, B., Mátrai, G., Ulmer, Á., Kotroczó, Zs., Effect of plant-coal biochar on soil organic matter and soil nutrient content. Kertgazdaság [Horticulture] 48. (2016) 89–96. (in Hungarian with English abstract).Search in Google Scholar

[24] Kocsis, T., Biró, B., Ulmer, Á., Szántó, M., Kotroczó, Zs., Time-lapse effect of ancient plant coal biochar on some soil agrochemical parameters and soil characteristics. Environmental Science and Pollution Research, 25. (2018) 990–999.10.1007/s11356-017-8707-028299568Search in Google Scholar

[25] Lajtha, K., Bowden, R. D., Crow, S., Fekete, I., Kotroczó, Zs., Plante, A., Simpson, M., Nadelhoffer, K., The Detrital Input and Removal Treatment (DIRT) network. Reference Module in Earth Systems and Environmental Sciences (2017).10.1016/B978-0-12-409548-9.09774-8Search in Google Scholar

[26] Kotroczó, Zs., Juhos, K., Biró, B., Kocsis, T., Pabar, S. A., Varga, C., Fekete, I., Effect of detritus manipulation on different organic matter decompositions in temperate deciduous forest soils. Forests, 11. (2020) 675.10.3390/f11060675Search in Google Scholar

[27] Lehmann, J., Kern, D. C., German, L. A., McCann, J., Martins, G. C., Moreira, A., Soil fertility and production potential. In: Lehmann, J., Kern, D. C., Glaser, B., Woods, W. I. (eds.), Amazonian dark earths: Origin, properties, management. Kluwer Academic Publishers, Dordrecht (2003) 105–124.Search in Google Scholar

[28] Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., Crowley, D., Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43. (2011) 1812–1836.10.1016/j.soilbio.2011.04.022Search in Google Scholar

[29] Matsubara, Y. I., Hasegawa, N., Fukui, H., Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. Journal of the Japanese Society of Horticultural Science, 71. (2002) 370–374.10.2503/jjshs.71.370Search in Google Scholar

[30] Nerome, M. K., Toyota, T. M. D., Islam, T., Nishijima, T., Matsuoka, K. S., Yamaguchi, Y., Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorganisms, 59. (2005) 9–14.Search in Google Scholar

[31] Ogawa, M., Okimori, Y., Pioneering works in biochar research, Japan. Soil Research, 48. (2010) 489–500.10.1071/SR10006Search in Google Scholar

[32] Organisation for Economic Co-Operation and Development. Test No. 312: Leaching in soil columns. OECD Publishing (2004).Search in Google Scholar

[33] Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., Ok, Y. S., Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148. (2016) 276–291.Search in Google Scholar

[34] Ré-Poppi, N., Santiago-Silva, M., Identification of polycyclic aromatic hydrocarbons and methoxylated phenols in wood smoke emitted during production of charcoal. Chromatographia, 55. (2002) 475–481.10.1007/BF02492280Search in Google Scholar

[35] Shomana, T., Botha, D. E., Agachi, P. S. The water retention properties of biochar derived from broiler poultry litter as applied to the Botswana soil. DRC Sustainable Future, 1. (2020) 67–72.10.37281/DRCSF/1.1.9Search in Google Scholar

[36] Strachel, R., Wyszkowska, J., Baćmaga, M., An evaluation of the effectiveness of sorbents in the remediation of soil contaminated with zinc. Water, Air, & Soil Pollution, 229. (2018) 235.10.1007/s11270-018-3882-2602885430046198Search in Google Scholar

[37] Thies, J. E., Rillig, M. C., Characteristics of biochar: Biological properties. In: Lehmann J., Joseph S. (eds.), Biochar for environmental management. Earthscan Publications Ltd (2009) 85–105.Search in Google Scholar

[38] Van Zwieten. L., Kimber. S., Downie. A., Morris. S., Petty. S., Rust, J., Chan, K. Y., A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Australian Journal of Soil Research, 48. (2010a) 569–576.10.1071/SR10003Search in Google Scholar

[39] Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., Cowie, A., Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327. (2010b) 235–246.10.1007/s11104-009-0050-xSearch in Google Scholar

[40] Wang, X., Zhao, F., Zhang, G., Zhang, Y., Yang, L., Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Frontiers in Plant Science, 8. (2017) 1978.10.3389/fpls.2017.01978570235429209343Search in Google Scholar

[41] Warnock, D. D., Lehmann, J., Kuyper, T. W., Rillig, M. C., Mycorrhizal responses to biochar in soil – Concepts and mechanisms. Plant and Soil, 300. (2007) 9–20.10.1007/s11104-007-9391-5Search in Google Scholar

[42] Włóka, D., Kacprzak, M., Grobelak, A., Grosser, A., Napora, A., The impact of PAHs contamination on the physicochemical properties and microbiological activity of industrial soils. Polycyclic Aromatic Compounds, 35. (2015) 372–386.10.1080/10406638.2014.918887Search in Google Scholar

[43] Yang, Y. N., Sheng, G. Y., Huang, M. S., Bioavailability of diuron in soil containing wheat-straw-derived char. Science of the Total Environment, 354. (2006) 170–178.10.1016/j.scitotenv.2005.01.02616398993Search in Google Scholar

[44] Zhang, A., Cui, L., Pa, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., Crowley, D., Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 139. (2010) 469e–475.10.1016/j.agee.2010.09.003Search in Google Scholar