Accès libre

Lactic acid bacteria (Leuconostoc mesenteroides) as bioprotective agents against some pathogenic fungi in common bean

À propos de cet article

Citez

Amoabeng, B. W., Johnson, A. C., Gurr, G. M. (2019), Natural enemy enhancement and botanical insecticide source: A review of dual use companion plants. Applied Entomology and Zoology 54(1), 1–19. Search in Google Scholar

Cortes, A. J., Monserrate, F. A., Ramírez-Villegas, J., Madriñán, S., Blair, M. (2013), Drought tolerance in wild plant populations: The case of common beans (Phaseolus vulgaris L.). PLOS One 8, e6289. Search in Google Scholar

Muke, A., Asanzi, M. C., Kijana, R. (2019), Appropriate use of fertilizers in the production of common bean (Phaseolus vulgaris) in the humid tropics of eastern Democratic Republic of Congo. Afrique Science 15(3), 176–189. Search in Google Scholar

Sanchez-Reinoso, A. D., Ávila-Pedraza, E. Á., Restrepo-Díaz, H. (2020), Use of biochar in agriculture. Acta Biológica Colombiana 25(2), 327–338. Search in Google Scholar

El-Mabrok, A. S. W., Hassan, Z., Mokhtar, A. M., Hussain, K. M. A., F. K. S. B. A., K. (2012), Screening of lactic acid bacteria as biocontrol against (Colletotrichum capsici) on chilli Bangi. Research Journal of Applied Sciences 7(9–12), 466–473. Search in Google Scholar

Guimarães, A., Venancio, A., Abrunhosa, L. (2018), Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Additives & Contaminants: Part A 35(9), 1803–1818. Search in Google Scholar

Šišić, A., Baćanović-Šišić, J., Karlovsky, P., Wittwer, R., Walder F., Campiglia, E., Radicetti, E., Friberg, H., Baresel, J. P., Finckh, M. R. (2018), Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum). PLOS One 13(2), e0191969. Search in Google Scholar

Chahardehi, A. M., Ibrahim, D., Sulaiman, S. F. (2010), Antioxidant, antimicrobial activity and toxicity test of Pilea Microphylla. International Journal of Microbiology 6. Search in Google Scholar

Mansouri, L. M., Kheloufi, A., Belatreche, R., Abdou, I., Boukhatem, Z. F., Nouzha, H. (2020), Effects of nitrogen fertilization on Mycorrhizal infection, nodulation and growth of Phaseolus vulgaris L. Contemporary Agriculture 69(3–4), 61–72. Search in Google Scholar

Tschen, J. S. M., Kuo, W. L. (1985), Antibiotic inhibition and control of Rhizoctonia solani by Bacillus subtilis. Plant Protection Bulletin (Taiwan, R.O.C.) 27(2), 95–103. Search in Google Scholar

Dalie, D. K. D. (2010), Biocontrol of fumonisin-producing molds of the genus Fusarium by selection of lactic acid bacteria indigenous to maize. [in French]. Ph.D. thesis, University of Bordeaux 1, France. Search in Google Scholar

Gaspar, P., Carvalho, A. L., Vinga, S., Santos, H., Neves, A. R. (2013), From physiology to systems mandabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances 31(6), 764–788. Search in Google Scholar

Holland, R., Liu, Q. S. (2011), Leuconostoc sp, Lactic acid bacteria. Elsevier. 138–142. Search in Google Scholar

He, Y., Zhu M., Huang, J., Hsiang, T., Zheng, L. (2019), Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Canadian Journal of Plant Pathology 41, 47–59. Search in Google Scholar

Makrerougrass, Z. (2016), The use of satellite images in determining the degradation factors of agricultural ecosystems (factor of urban sprawl). [in French]. Abdelhamid Ibn Badis-Mostaganem University, Algeria. Search in Google Scholar

Rappily, F. (1968): Les Techniques de mycologie en pathologie végétale. Ann. Epiphytes 19, 102. INRA, Paris. Search in Google Scholar

Maufras, J. Y. (1996), Anthracnose [in French]. Prespectives Agricoles 22, 6–17. Search in Google Scholar

Andersen, A. M., Leach, C. M. (1961), Testing seeds for seed borne organisms. In: Stefferud, A. (ed.), Seeds: The Yearbook of Agriculture. Washington, DC, USA: US Department of Agriculture. 453–457. Search in Google Scholar

Botton, B., Breton, A., Fèvre, M., Gauthier, S., Guy, P., Larpent, J. P., Reymond, P., Sanglier, J. J., Vayssier, Y., Veau, P. (1990), Useful and harmful molds. Industrial importance. 2nd ed [in French]. Masson, Paris. Search in Google Scholar

Gerbaldo, G. A., Barberis, C., Pascual, L., Dalcero, A., Barberis, L. (2012), Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiology Letters 332, 27–33. Search in Google Scholar

Hammami, I., Trabelsi, H. D., El Gazzah, M. (2012), In vitro screening of soil bacteria for inhibiting phytopathogenic fungi. African Journal of Biotechnology 11(81), 14660–14670. Search in Google Scholar

Ogier, J. C., Casalta, E., Farrokh, C., Saihi, A. (2008), Safety assessment of dairy microorganisms: The Leuconostoc genus. International Journal of Microbiology 126, 286–290. Search in Google Scholar

Guiraud, J. P. (1998), Microbiologie alimentaire. Paris: DUNOD. Search in Google Scholar

Rai, P. K., Kumari, L. (2009), Variability in Alternaria alternata infecting Periwinkle (Catharanthus roseus). Progress in Agriculture 9, 269–272. Search in Google Scholar

Tabuc, C. (2007), Flore Fongique de différents Substrats et Conditions Optimales de Production des Mycotoxines. Thèse de Doctorat d’université: Pathologie, Mycologie, Genetique Et Nutrition. Toulouse: L’institut National Poly Technique et de l’université de Bucarest. France. Search in Google Scholar

Czaczyk, K., Myszka, K. (2007), Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies 16(6), 799–806. Search in Google Scholar

Magnusson, J., Schnurer, J. (2001), Lactobacillus coryniformis subsp. Coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology 67, 1–5. Search in Google Scholar

Varsha, K. K., Nampoothiri, K. M. (2016), Appraisal of lactic acid bacteria as protective cultures. Food Control 69, 61–64. Search in Google Scholar

Schwenninger, S. M., Ah, U., Niederer, B., Teuber, M., Meile, L. (2005), Detection of antifungal properties in Lactobacillus paracasei subsp. Paracasei SM20, SM29, and SM63 and molecular typing of the strains. Journal of Food Protection 68(1), 111–119. Search in Google Scholar

Le Lay, C., Mounier, J., Vasseur, V., Weill, A., Le Blay, G., Barbier, G., Coton, E. (2016), In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 60, 247–255. Search in Google Scholar

Bianchini, A. (2010), Antifungal activity of lactic acid bacteria: Factors affecting production and stability of antifungal compounds of Lactobacillus plantarum, and effects of the antifungal compounds on growth and aflatoxin production by Aspergillus spp. Ph.D. thesis, Nebraska University. Search in Google Scholar

Schillinger, U., Villarreal, J. V. (2010), Inhibition of Penicillium nordicum in MRS medium by lactic acid bacteria isolated from foods. Food Control 21: 107–111. Search in Google Scholar

eISSN:
2068-2964
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other