À propos de cet article

Citez

[1] Woodhead, A. L., Cosgrove, B., Church, J. S. (2016), The purple coloration of four late 19th century silk dresses: A spectroscopic investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 154, 185–192.10.1016/j.saa.2015.10.024 Search in Google Scholar

[2] Pearce, C. (2003), The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 58(3), 179–196.10.1016/S0143-7208(03)00064-0 Search in Google Scholar

[3] Nikravesh, B., Shomalnasab, A., Nayyer, A., Aghababaei, N., Zarebi, R., Ghanbari, F. (2020), UV/chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater, J. Environ. Chem. Eng. 8(5), 104244.10.1016/j.jece.2020.104244 Search in Google Scholar

[4] Abe, F. R., Machado, A. L., Soares, A., Oliveira, D. P., Pestana, J. L. T. (2019), Life history and behavior effects of synthetic and natural dyes on Daphnia magna. Chemosphere 236, 124390.10.1016/j.chemosphere.2019.12439031344623 Search in Google Scholar

[5] Khatri, A., Peerzada, M. H., Mohsin, M., White, M. (2015), A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J. Clean. Prod. 87, 50–57.10.1016/j.jclepro.2014.09.017 Search in Google Scholar

[6] Wainwright, M. (2008), Dyes in the development of drugs and pharmaceuticals. Dyes Pigm. 76(3), 582–589.10.1016/j.dyepig.2007.01.015 Search in Google Scholar

[7] Benkhaya, S., M’rabet, S., El-Harfi, A. (2020), A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 115, 107891.10.1016/j.inoche.2020.107891 Search in Google Scholar

[8] Hassan, M. M., Carr, C. M. (2021), Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. Chemosphere 265, 129087.10.1016/j.chemosphere.2020.12908733280840 Search in Google Scholar

[9] Liu, D., Gu, W., Zhou, L., Wang, L., Zhang, J., Liu, Y., Lei, J. (2022), Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 427, 131503.10.1016/j.cej.2021.131503 Search in Google Scholar

[10] Parmar, M., Sanyal, M. (2022), Extensive study on plant mediated green synthesis of metal nanoparticles and their application for degradation of cationic and anionic dyes. Environ. Nanotechnol. Monit. Manag. 17, 100624.10.1016/j.enmm.2021.100624 Search in Google Scholar

[11] Penthala, R., Oh, H., Park, S. H., Lee, I. Y., Ko, E. H., Son, Y.-A. (2022), Synthesis of novel reactive disperse dyes comprising carbamate and cyanuric chloride groups for dyeing polyamide and cotton fabrics in supercritical carbon dioxide. Dyes Pigm. 198, 110003.10.1016/j.dyepig.2021.110003 Search in Google Scholar

[12] Delport, A., Harvey, B. H., Petzer, A., Petzer, J. P. (2017), The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol. Appl. Pharmacol. 325, 1–8.10.1016/j.taap.2017.03.026 Search in Google Scholar

[13] Shahinyan, G. A., Amirbekyan, A. Y., Markarian, S. A. (2019), Photophysical properties of methylene blue in water and in aqueous solutions of dimethylsulfoxide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 217, 170–175.10.1016/j.saa.2019.03.079 Search in Google Scholar

[14] Gensini, G. F., Conti, A. A., Lippi, D. (2007), The contributions of Paul Ehrlich to infectious disease. J. Infect. 54(3), 221–224.10.1016/j.jinf.2004.05.02216567000 Search in Google Scholar

[15] Burhenne, J., Riedel, K. D., Rengelshausen, J., Meissner, P., Muller, O., Mikus, G., Walter-Sack, I. (2008), Quantification of cationic anti-malaria agent methylene blue in different human biological matrices using cation exchange chromatography coupled to tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 863(2), 273–282.10.1016/j.jchromb.2008.01.02818258499 Search in Google Scholar

[16] Grauman-Neander, N., Loner, C.A., Rotoli, J. M. (2018), The acute treatment of methemoglobinemia in pregnancy. J. Emerg. Med. 54(5), 685–689.10.1016/j.jemermed.2018.01.03829627348 Search in Google Scholar

[17] Liu, S., Ge, H., Wang, C., Zou, Y., Liu, J. (2018), Agricultural waste/graphene oxide 3D bio-adsorbent for highly efficient removal of methylene blue from water pollution. Sci. Total Environ. 628/629, 959–968.10.1016/j.scitotenv.2018.02.13430045584 Search in Google Scholar

[18] Steensma, D. P. (2001), Congo red: Out of Africa? Arch. Pathol. Lab. Med. 125, 250–252.10.5858/2001-125-0250-CR Search in Google Scholar

[19] Zheng, Y., Cheng, B., Fan, J., Yu, J., Ho, W. (2021), Review on nickel-based adsorption materials for Congo red. J. Hazard. Mater. 403, 123559.10.1016/j.jhazmat.2020.123559 Search in Google Scholar

[20] Howie, A. J., Brewer, D. B. (2009), Optical properties of amyloid stained by Congo red: History and mechanisms. Micron. 40(3), 285–301.10.1016/j.micron.2008.10.00219019688 Search in Google Scholar

[21] Naseem, K., Farooqi, Z. H., Begum, R., Irfan, A. (2018), Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J. Clean. Prod. 187, 296–307.10.1016/j.jclepro.2018.03.209 Search in Google Scholar

[22] Sun, G., Zhang, J., Hao, B., Li, X., Yan, M., Liu, K. (2022), Feasible synthesis of coal fly ash based porous composites with multiscale pore structure and its application in Congo red adsorption. Chemosphere 298, 134136.10.1016/j.chemosphere.2022.13413635276105 Search in Google Scholar

[23] Zeebaree, A. Y. S, Zeebaree, S. Y. S, Rashid, R. F., Zebari, O. I. H, Albarwry, A. J. S., Ali, A. F., Zebari, A. Y. S. (2022), Sustainable engineering of plantsynthesized TiO2 nanocatalysts: Diagnosis, properties and their photocatalytic performance in removing of methylene blue dye from effluent. A review. Curr. Opin. Green Sustain. Chem. 5, 100312.10.1016/j.crgsc.2022.100312 Search in Google Scholar

[24] Chowdhury, M. F., Khandaker, S., Sarker, F., Islam, A., Rahman, M. T., Awual, M. R. (2020), Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J. Mol. Liq. 318, 114061.10.1016/j.molliq.2020.114061 Search in Google Scholar

[25] Karimifard, S., Alavi Moghaddam, M. R. (2018), Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci. Total Environ. 640/641, 772–797.10.1016/j.scitotenv.2018.05.35530021324 Search in Google Scholar

[26] McYotto, F., Wei, Q., Macharia, D. K., Huang, M., Shen, C., Chow, C. W. K. (2021), Effect of dye structure on color removal efficiency by coagulation. Chem. Eng. J. 405, 126674.10.1016/j.cej.2020.126674 Search in Google Scholar

[27] Subrahmanya, T. M., Widakdo, J., Mani, S., Austria, H. F. M., Hung, W.-S., Makari, H. K., Nagar, J. K., Hu, C.-C., Lai, J.-Y. (2022), An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA. J. Clean. Prod. 349, 131425.10.1016/j.jclepro.2022.131425 Search in Google Scholar

[28] Wazir, M. B., Daud, M., Ali, F., Al-Harthi, M. A. (2020), Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J. Mol. Liq. 315, 113775.10.1016/j.molliq.2020.113775 Search in Google Scholar

[29] Joseph, J., Radhakrishnan, R. C., Johnson, J. K., Joy, S. P., Thomas, J. (2020), Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys. 242, 122488.10.1016/j.matchemphys.2019.122488 Search in Google Scholar

[30] Azbar, N., Yonar, T., Kestioglu, K. (2004), Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55(1), 35–43.10.1016/j.chemosphere.2003.10.04614720544 Search in Google Scholar

[31] Elbatea, A. A., Nosier, S. A., Zatout, A. A., Hassan, I., Sedahmed, G. H., Abdel-Aziz, M. H., El-Naggar, M. A. (2021), Removal of reactive red 195 from dyeing wastewater using electro-Fenton process in a cell with oxygen sparged fixed bed electrodes. J. Water Process Eng. 41, 102042.10.1016/j.jwpe.2021.102042 Search in Google Scholar

[32] Xin, Y.-Y., Zhou, L., Ma, K.-K., Lee, J., Qazi, H.I.A., Li, H.-P., Bao, C.-Y., Zhou, Y.-X. (2020), Removal of bromoamine acid in dye wastewater by gas-liquid plasma: The role of ozone and hydroxyl radical. J. Water Process Eng. 37, 101457.10.1016/j.jwpe.2020.101457 Search in Google Scholar

[33] Mahmoodi, M., Rafiee, E., Eavani, S. (2022), Photocatalytic removal of toxic dyes, liquorice and tetracycline wastewaters by a mesoporous photocatalyst under irradiation of different lamps and sunlight. J. Environ. Manage. 313, 115023.10.1016/j.jenvman.2022.11502335398644 Search in Google Scholar

[34] Singh, A., Pal, D. B., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T., Srivastava, N., Gupta, V. K. (2022), Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 343, 126154.10.1016/j.biortech.2021.12615434673196 Search in Google Scholar

[35] Robens, E. (1994), Some intriguing items in the history of adsorption. Studies in Surface Science and Catalysis 87, 109–118.10.1016/S0167-2991(08)63070-0 Search in Google Scholar

[36] Bensalah, J., Benhiba, F., Habsaoui, A., Ouass, A., Zarrouk, A., Lebkiri, A., El-Khattabi, O., Rifi, E. H. (2022), The adsorption mechanism of the anionic and cationic dyes of the cationic resin A®IRC-50, kinetic study and theoretical investigation using DFT. J. Indian Chem. Soc. 99(7), 100512.10.1016/j.jics.2022.100512 Search in Google Scholar

[37] Geca, M., Wisniewska, M., Nowicki, P. (2022), Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems – A review. Adv. Colloid Interface. Sci. 305, 102687.10.1016/j.cis.2022.102687 Search in Google Scholar

[38] Babatunde, K. A., Negash, B. M., Jufar, S. R., Ahmed, T. Y., Mojid, M. R. (2022), Adsorption of gases on heterogeneous shale surfaces: A review. J. Pet. Sci. Eng. 208(B), 109466.10.1016/j.petrol.2021.109466 Search in Google Scholar

[39] Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H., Alam, S. M. N. (2022). A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Tech. 6, 100382.10.1016/j.clet.2021.100382 Search in Google Scholar

[40] Bal, G., Thakur, A. (2022), Distinct approaches of removal of dyes from wastewater: A review. Mater. Today Proc. 50, 1575–1579.10.1016/j.matpr.2021.09.119 Search in Google Scholar

[41] Rashid, S., Shen, C., Yang, J., Liu, J., Li, J. (2018), Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution. J. Environ. Sci. 66, 301–309.10.1016/j.jes.2017.04.033 Search in Google Scholar

[42] Osagie, C., Othmani, A., Ghosh, S., Malloum, A., Kashitarash Esfahani, Z., Ahmadi, S. (2021), Dyes adsorption from aqueous media through the nanotechnology: A review. J. Mater. Res. Tech. 14, 2195–2218.10.1016/j.jmrt.2021.07.085 Search in Google Scholar

[43] Misran, E., Bani, O., Situmeang, E. M., Purba, A. S. (2022), Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, reusability. Alex. Eng. J. 61(3), 1946–1955.10.1016/j.aej.2021.07.022 Search in Google Scholar

[44] Zhang, Z., Xu, L., Liu, Y., Feng, R., Zou, T., Zhang, Y., Zhou, P. (2021), Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, thermodynamic studies. Microporous Mesoporous Mater. 315, 110904.10.1016/j.micromeso.2021.110904 Search in Google Scholar

[45] Baloo, L., Isa, M. H., Sapari, N. B., Jagaba, A. H., Wei, L. J., Yavari, S., Razali, R., Vasu, R. (2021), Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alex. Eng. J. 60(6), 5611–5629.10.1016/j.aej.2021.04.044 Search in Google Scholar

[46] Mahapatra, U., Manna, A. K., Chatterjee, A. (2022), A critical evaluation of conventional kinetic and isotherm modeling for adsorptive removal of hexavalent chromium and methylene blue by natural rubber sludge-derived activated carbon and commercial activated carbon. Bioresour. Technol. 343, 126135.10.1016/j.biortech.2021.12613534655775 Search in Google Scholar

[47] Tuli, F. J., Hossain, A., Kibria, A. K. M. F., Tareq, A. R. M., Mamun, S. M. M. A., Ullah, A. K. M. A. (2020), Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environ. Nanotechnol. Monit. Manag. 14, 100354.10.1016/j.enmm.2020.100354 Search in Google Scholar

[48] Muniyandi, M., Govindaraj, P., Bharath-Balji, G. (2021), Potential removal of methylene blue dye from synthetic textile effluent using activated carbon derived from palmyra (palm) shell. Mater. Today Proc. 47, 299–311.10.1016/j.matpr.2021.04.468 Search in Google Scholar

[49] Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A., Shi, S. Q. (2021), Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, isotherm studies. J. Contam. Hydrol. 243, 103869.10.1016/j.jconhyd.2021.10386934418820 Search in Google Scholar

[50] Ghaedi, M., Tavallali, H., Sharifi, M., Kokhdan, S. N., Asghari, A. (2012), Preparation of low cost activated carbon from myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 86, 107–114.10.1016/j.saa.2011.10.012 Search in Google Scholar

[51] Karaman, C., Karaman, O., Show, P. L., Karimi-Maleh, H., Zare, N. (2022), Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, thermodynamic modeling, forecasting via artificial neural network approach. Chemosphere 290, 133346.10.1016/j.chemosphere.2021.13334634929270 Search in Google Scholar

[52] Amran, F., Zaini, M. A. A. (2021), Valorization of casuarina empty fruitbased activated carbons for dyes removal – Activators, isotherm, kinetics and thermodynamics. Surf. Interfaces 25, 101277.10.1016/j.surfin.2021.101277 Search in Google Scholar

[53] Ma, M., Ying, H., Cao, F., Wang, Q., Ai, N. (2020), Adsorption of Congo red on mesoporous activated carbon prepared by CO2 physical activation. Chin. J. Chem. Eng. 28(4), 1069–1076.10.1016/j.cjche.2020.01.016 Search in Google Scholar

[54] Li, Z., Hanafy, H., Zhang, L., Sellaoui, L., Schadeck Netto, M., Oliveira, M. L. S., Li, Q. (2020), Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem. Eng. J. 388, 124263.10.1016/j.cej.2020.124263 Search in Google Scholar

eISSN:
2068-2964
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other