Accès libre

Assessment of 1-Triacontanol treatment of sweet corn (Zea mays L. convar. saccharata) aimed at the improvement of salt tolerance based on a pot experiment

À propos de cet article

Citez

[1] Felföldi, J., Kerekes, V. (2016), Economic analysis of sweet corn production through the example of an integrator in Hungary. In: Abstract: Applied studies in agribusiness and commerce. 1–12. Search in Google Scholar

[2] Gergely, G. N. T. (2019), Kertészeti zöldségtermesztés vizsgálata Magyarországon és az EU-ban. Acta Agronomica Óváriensis 60(1). Search in Google Scholar

[3] van Landbouw, M. (2021), Fruit and vegetable production in Hungary. Nieuwsbericht – Agroberichten Buitenland. https://www.agroberichtenbuitenland.nl/actueel/nieuws/2021/02/22/hungary-tldr-horti-fruit-veg (downloaded on: 06/06/2021). Search in Google Scholar

[4] Helyes, L. (2005), Az öntözés szerepe, jelentősége. Gazdálkodás. Scientific Journal on Agricultural Economics 49(5), 63–69. Search in Google Scholar

[5] Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., Hernandez, J. A. (2017), Plant responses to salt stress: Adaptive mechanisms. Agronomy 7(1), 18.10.3390/agronomy7010018 Search in Google Scholar

[6] Munns, R., Tester, M. (2008), Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.10.1146/annurev.arplant.59.032607.09291118444910 Search in Google Scholar

[7] Zsembeli, J., Kovács, G., Mándoki, A. (2011), Water use efficiency of maize and different sorghum hybrids under lysimeter conditions. In: 14. Gumpensteiner Lysimetertagung. 227–229. Search in Google Scholar

[8] Slezák, K. A. (2001), Fehér termésű paprika sótűrése. Doctoral dissertation. Szent István University, Gödöllő. Search in Google Scholar

[9] Zsembeli, J., Kovács, Gy., Szűcs, L., Tóth, J. (2013), Examination of secondary salinization in simple drainage lysimeters. In: 15. Gumpensteiner Lysimetertagung. 153–156. Search in Google Scholar

[10] Garcia, A. R., Tuba, G., Kovács, G., Sinka, L., Zsembeli, J. (2021), Methodology adaptation and development to assess salt content dynamics and salt balance of soils under secondary salinization. Acta Agraria Debreceniensis (1), 199–206.10.34101/actaagrar/1/8326 Search in Google Scholar

[11] Zsembeli, J., Sinka, L., Rivera-García, A., Czellér, K., Tuba, G., Krištof, K., Findura, P. (2019), Effect of soil conditioning on the moisture content and the salt profile of the soil under irrigation with saline water. Agriculture 65(2), 77–87.10.2478/agri-2019-0008 Search in Google Scholar

[12] Ashraf, M., Harris, J. C. (2004), Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3–16.10.1016/j.plantsci.2003.10.024 Search in Google Scholar

[13] Abdul, R., Mahmood, K. (2012), Rehabilitation of saline ecosystems through cultivation of salt tolerant plants. Pakistan Journal of Botany 44, 69–75. Search in Google Scholar

[14] Futó, Z., Bencze, G. (2017), Új lehetőségek a kukorica (Zea mays L.) öntözésében. Jelenkori Társadalmi és Gazdasági Folyamatok 12(3), 67–79.10.14232/jtgf.2017.3.67-79 Search in Google Scholar

[15] Perveen, S., Shahbaz, M., Ashraf, M. (2012), Is pre-sowing seed treatment with triacontanol effective in improving some physiological and biochemical attributes of wheat (Triticum aestivum L.) under salt stress? Journal of Applied Botany and Food Quality 85(1), 41. Search in Google Scholar

[16] Perveen, S., Iqbal, M., Parveen, A., Akram, M. S., Shahbaz, M., Akber, S., Mehboob, A. (2017), Exogenous triacontanol-mediated increase in phenolics, proline, activity of nitrate reductase, and shoot k+ confers salt tolerance in maize (Zea mays L.). Brazilian Journal of Botany 40(1), 1–11.10.1007/s40415-016-0310-y Search in Google Scholar

[17] Naeem, M., Khan, M. M. A., Moinuddin. (2012), Triacontanol: A potent plant growth regulator in agriculture. Journal of Plant Interactions 7(2), 129–142.10.1080/17429145.2011.619281 Search in Google Scholar

[18] Harrabi, S., Boukhchina, S., Mayer, P. M., Kallel, H. (2009), Policosanol distribution and accumulation in developing corn kernels. Food Chemistry 115(3), 918–923.10.1016/j.foodchem.2008.12.098 Search in Google Scholar

[19] Corona-López, E., Román-Gutiérrez, A. D., Otazo-Sánchez, E. M., Guzmán-Ortiz, F. A., Acevedo-Sandoval, O. A. (2021), Water–food nexus assessment in agriculture: A systematic review. International Journal of Environmental Research and Public Health 18(9), 4983.10.3390/ijerph18094983812484134067130 Search in Google Scholar

[20] Bates L. S., Waldren R. P., Teare I. D. (1973), Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207.10.1007/BF00018060 Search in Google Scholar

[21] Anjum, M. A. (2008), Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiologiae Plantarum 30(1), 43–52. DOI: 10.1007/s11738-007-0089-3. Open DOISearch in Google Scholar

[22] Cha-Um S., Kirdmanee, C. (2009), Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pakistan Journal of Botany 41(1), 87–98. Search in Google Scholar

[23] Çelik, Ö., Atak, C. (2012), The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish Journal of Biology 36(3), 339–356.10.3906/biy-1108-11 Search in Google Scholar

[24] Karimi, S., Eshghi, S., Karimi, S., Hasan-Nezhadian, S. (2017), Inducing salt tolerance in sweet corn by magnetic priming. Acta Agriculturae Slovenica 109(1), 89–102.10.14720/aas.2017.109.1.09 Search in Google Scholar

eISSN:
2068-2964
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other