1. bookVolume 21 (2022): Edition 1 (January 2022)
DĂ©tails du magazine
License
Format
Magazine
eISSN
2300-133X
PremiĂšre parution
11 Dec 2014
Périodicité
1 fois par an
Langues
Anglais
AccĂšs libre

Deductive systems of pseudo-M algebras

Publié en ligne: 30 Jan 2023
Volume & Edition: Volume 21 (2022) - Edition 1 (January 2022)
Pages: 93 - 116
Reçu: 30 Jul 2022
Accepté: 06 Nov 2022
DĂ©tails du magazine
License
Format
Magazine
eISSN
2300-133X
PremiĂšre parution
11 Dec 2014
Périodicité
1 fois par an
Langues
Anglais

[1] Borumand Saeid, Arsham, and Akbar Rezaei. “Quotient CI-algebras.” Bull. Transilv. Univ. Bra³ov Ser. III 5(54), no. 2 (2012): 15-22. Cited on 94. Search in Google Scholar

[2] Borzooei, Rajab Ali, et al. “On pseudo BE-algebras.” Discuss. Math. Gen. Algebra Appl. 33, no. 1 (2013): 95-108. Cited on 94, 98 and 103.10.7151/dmgaa.1193 Search in Google Scholar

[3] Chaudhry, Muhammad Anwar, and Hafiz Fukhar-ud-din. “Ideals and filters in BCH-algebras.” Math. Japon. 44, no. 1 (1996): 101-111. Cited on 94. Search in Google Scholar

[4] Dudek, WiesƂaw Aleksander, and Young Bae Jun. “Pseudo-BCI algebras.” East Asian Math. J. 24, no. 2 (2008): 187-190. Cited on 93. Search in Google Scholar

[5] Dymek, Grzegorz. “Atoms and ideals of pseudo-BCI-algebras.” Comment. Math. 52, no. 1 (2012): 73-90. Cited on 101. Search in Google Scholar

[6] Dymek, Grzegorz. “On compatible deductive systems of pseudo-BCI-algebras.” J. Mult.-Valued Logic Soft Comput. 22, no. 1-2 (2014): 167-187. Cited on 104. Search in Google Scholar

[7] Dymek, Grzegorz. “On pseudo-BCI-algebras.” Ann. Univ. Mariae Curie-SkƂodowska Sect. A 69, no. 1 (2015): 59-71. Cited on 98.10.17951/a.2015.69.1.59 Search in Google Scholar

[8] Georgescu, George, and Afrodita Iorgulescu. “Pseudo-BCK algebras: an extension of BCK algebras.” In: Combinatorics, computability and logic. Proceedings of the Third International Conference on Combinatorics, Computability and Logic, (DMTCS’O1), 97-114. London: Springer-Verlag, 2001. Cited on 93.10.1007/978-1-4471-0717-0_9 Search in Google Scholar

[9] Hoo, Cheong Seng. “Filters and ideals in BCI-algebras.” Math. Japon. 36, no. 5 (1991): 987-997. Cited on 94. Search in Google Scholar

[10] Hu, Qing Ping, and Xin Li. “On BCH-algebras.” Math. Sem. Notes Kobe Univ. 11, no. 2 (1983): 313-320. Cited on 93. Search in Google Scholar

[11] Imai, Yasuyuki, and Kiyoshi IsĂ©ki. “On axiom systems of propositional calculi. XIV.” Proc. Japan Acad. 42 (1966): 19-22. Cited on 93.10.3792/pja/1195522169 Search in Google Scholar

[12] Iorgulescu, Afrodita. Algebras of logic as BCK algebras. Bucharest: Editura ASE, 2008. Cited on 98. Search in Google Scholar

[13] Iorgulescu, Afrodita. “New generalizations of BCI, BCK and Hilbert algebras – Part I.” J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 353-406. Cited on 96. Search in Google Scholar

[14] Iorgulescu, Afrodita. Implicative-groups vs. groups and generalizations. Bucharest: Matrix Rom, 2018. Cited on 94 and 95. Search in Google Scholar

[15] IsĂ©ki, Kiyoshi. “An algebra related with a propositional calculus.” Proc. Japan Acad. 42 (1966): 26-29. Cited on 93.10.3792/pja/1195522171 Search in Google Scholar

[16] Jun, Young Bae. “Some results on ideals of BCK-algebras.” Sci. Math. Jpn. 53, no. 3 (2001): 477-480. Cited on 94. Search in Google Scholar

[17] Kim, Hee Sik, and Young Hee Kim. “On BE-algebras.” Sci. Math. Jpn. 66, no. 1 (2007): 113-116. Cited on 93. Search in Google Scholar

[18] Kim, Young Hee, and Keum Sook So. “On minimality in pseudo-BCI-algebras.” Commun. Korean Math. Soc. 27, no. 1 (2012): 7-13. Cited on 98.10.4134/CKMS.2012.27.1.007 Search in Google Scholar

[19] KĂŒhr, Jan. Pseudo-BCK-algebras and related structures. Olomouc: Univerzita PalackĂ©ho v Olomouci, 2007. Cited on 98 and 104. Search in Google Scholar

[20] Meng, Biao Long. “CI-algebras.” Sci. Math. Jpn. 71, no. 1 (2010): 11-17. Cited on 93 and 104. Search in Google Scholar

[21] Meng, Biao Long. “On filters in BE-algebras.” Sci. Math. Jpn. 71, no. 2 (2010): 201-207. Cited on 94. Search in Google Scholar

[22] Meng, Biao Long. “Closed filters in CI-algebras.” Sci. Math. Jpn. 71, no. 3 (2010): 367-372. Cited on 94 and 100. Search in Google Scholar

[23] Meng, Jie. “On ideals in BCK-algebras.” Math. Japon. 40, no. 1 (1994): 143-154. Cited on 94. Search in Google Scholar

[24] Meng, Jie, and Shi Ming Wei. “Periodic BCI-algebras and closed ideals.” Math. Japon. 38, no. 3 (1993): 571-575. Cited on 94. Search in Google Scholar

[25] Rezaei, Akbar, Arsham Borumand Saeid, and Yousefi Sikari Saber. “On pseudo-CI algebras.” Soft Comput. 23, no. 13 (2019): 4643-4654. Cited on 94, 98, 104 and 108.10.1007/s00500-018-3428-y Search in Google Scholar

[26] Roh, Eun Hwan, Seon Yu Kim, and Young Bae Jun. “On a problem in BCH-algebras.” Math. Japon. 52, no. 2 (2000): 279-283. Cited on 106. Search in Google Scholar

[27] Walendziak, Andrzej. “On normal filters and congruence relations in BE-algebras.” Comment. Math. 52, no. 2 (2012): 199-205. Cited on 94. Search in Google Scholar

[28] Walendziak, Andrzej. “Pseudo-BCH-algebras.” Discuss. Math. Gen. Algebra Appl. 35, no. 1 (2015): 5-19. Cited on 94, 98, 100, 101 and 103.10.7151/dmgaa.1233 Search in Google Scholar

[29] Walendziak, Andrzej. “On ideals of pseudo-BCH-algebras.” Ann. Univ. Mariae Curie-SkƂodowska Sect. A 70, no. 1 (2016): 81-91. Cited on 94 and 106.10.17951/a.2016.70.1.81 Search in Google Scholar

[30] Walendziak, Andrzej. “Deductive systems and congruences in RM algebras.” J. Mult.-Valued Logic Soft Comput. 30, no. 4-6 (2018): 521-539. Cited on 106. Search in Google Scholar

Articles recommandés par Trend MD