Accès libre

Analysis of Cultural Heritage by Non-Destructive Methods: The Case of Sivas Congress Museum

À propos de cet article

Citez

Debailleux, L. Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks. International Journal of Architectural Heritage, vol. 13, no. 2, 2019, pp. 288–297. https://doi.org/10.1080/15583058.2018.1436204 Search in Google Scholar

Martínez-Soto, F., Ávila, F., Puertas, E., Gallego, R. Spectral analysis of surface waves for non-destructive evaluation of historic masonry buildings. Journal of Cultural Heritage, vol. 52, 2021, pp. 31–37. https://doi.org/10.1016/j.culher.2021.09.002. Search in Google Scholar

Cotič, P., Jagličić, Z., Bosiljkov, V. Validation of non-destructive characterization of the structure and seismic damage propagation of plaster and texture in multi-leaf stone masonry walls of cultural-artistic value. Journal of Cultural Heritage, vol. 15, no. 5, 2014, pp. 490–498. https://doi.org/10.1016/j.culher.2013.11.004. Search in Google Scholar

Shrestha, R., Sfarra, S., Ridolfi, S., Gargiulo, G., Kim, W. A numerical–thermal–thermographic NDT evaluation of an ancient marquetry integrated with X-ray and XRF surveys. Journal of Thermal Analysis awnd Calorimetry, vol. 147, 2022, pp. 2265–2279. https://doi.org/10.1007/s10973-021-10571-2 Search in Google Scholar

Sfarra, S., Bendada, A., Ibarra-Castanedo, C., Ambrosini, D., Maldague, X. Santa Maria di Collemaggio Church (L’Aquila, Italy): Historical Reconstruction by Non-Destructive Testing Techniques. International Journal of Architectural Heritage, vol. 9, no. 4, 2015, pp. 367–390. https://doi.org/10.1080/15583058.2013.794376 Search in Google Scholar

De Fino, M., Scioti, A., Rubino, R., Fatiguso, F. Assessment of historic buildings by radar techniques. Structural Survey, vol. 34, no. 1, 2016, pp. 73–94. https://doi.org/10.1108/SS-07-2015-0035 Search in Google Scholar

Gil, E., Mas, Á., Lerma, C., Torner, M. E., Vercher, J. Non-destructive Techniques Methodologies for the Detection of Ancient Structures under Heritage Buildings. International Journal of Architectural Heritage, vol. 15, no. 10, 2021, pp. 1457–1473. https://doi.org/10.1080/15583058.2019.1700320 Search in Google Scholar

Spodek, J., Rosina, E. Application of Infrared Thermography to Historic Building Investigation. Journal of Architectural Conservation, vol. 15 no. 1, 2009, pp. 65–81. https://doi.org/10.1080/13556207.2009.10785040 Search in Google Scholar

Pehlivan, E. Archaeological Evaluation and Provenance Analysis of Apollon’s Torso in Sivas Archaeological Museum. Mediterranean Archaeology and Archaeometry, vol. 22, no. 1, 2022, pp. 97–109. Search in Google Scholar

Pehlivan, E. A Comprehensive Approach of XRF and Analogical Study of a Phrygian Fibula. Mediterranean Archaeology and Archaeometry, vol. 22, no. 3, 2022, pp. 265–279. Search in Google Scholar

Gulsu, S., Colomban, P., Casadio, F., Bellot-Gurlet, L., Zelleke, G., Faber, K.T., Milande, V., Tilliard, L. On-Site Identification of Early Böttger Red Stoneware Using Portable Xrf/Raman Instruments: 2, Glaze & Gilding Analysis. Journal of the American Ceramic Society, vol. 98, no. 10, 2015, pp. 3006–3013. https://doi.org/10.1111/jace.13720 Search in Google Scholar

Rix, H., Emmitt, S. Issues of authenticity when conserving historic imitative crafts. Journal of Architectural Conservation, vol. 1, no. 19, 2022, pp. 1355–6207. https://doi.org/10.1080/13556207.2022.2066389 Search in Google Scholar

Blessley, K., Young, C., Nunn, J., Coddington, J., Shepard, S. The Feasibility of Flash Thermography for the Examination and Conservation of Works of Art. Studies in Conservation, vol. 55, no. 2, 2010, pp. 107–120. https://doi.org/10.1179/sic.2010.55.2.107 Search in Google Scholar

Leone, G., De Vita, A., Consumi, M., Tamasi, G., Bonechi, C., Donati, A., Rossi, C., Magnani, A. Comparison of Original and Modern Mortars at the Herculaneum Archaeological Site. Conservation and Management of Archaeological Sites, vol. 21, no. 2, 2019, pp. 92–112. https://doi.org/10.1080/13505033.2019.1638139 Search in Google Scholar

Sandak, J., Sandak, A., Riggio, M. Characterization and Monitoring of Surface Weathering on Exposed Timber Structures with a MultiSensor Approach. International Journal of Architectural Heritage, vol. 9, no. 6, 2015, pp. 674–688. https://doi.org/10.1080/15583058.2015.1041190 Search in Google Scholar

Kilic, G. Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy. Journal of Cultural Heritage, vol. 16, 2015, pp. 526–535. https://doi.org/10.1016/j.culher.2014.09.010 Search in Google Scholar

Luziński, R., Ziemkiewicz, J., Synaszko, P., Żyluk, A., Dragan, K. A Comparison of Composite Specimens Damage Area Measurements Performed using Pulsed Thermography and Ultrasonic NDT Methods. Fatigue of Aircraft Structures, vol. 11, 2019, pp. 68–77. https://doi.org/10.2478/fas-2019-0007 Search in Google Scholar

Costa, V. S., Silveira, A. M., Torres, A. S. Evaluation of Degradation State of Historic Building Facades through Qualitative and Quantitative Indicators: Case Study in Pelotas, Brazil. International Journal of Architectural Heritage, 2021, pp. 1–24. https://doi.org/10.1080/15583058.2021.1901161 Search in Google Scholar

Google Earth Pro [online, cited 15.05.2021]. https://www.google.com/earth/versions/ Search in Google Scholar

Kuzucu, K. Osmanlı’dan Cumhuriyete Şehircilik, Mimarî ve Eğitim Anlayışındaki Değişmeler Bağlamında Sivas Kongresi. Ankara Üniversitesi Türk İnkılâp Tarihi Enstitüsü Atatürk Yolu Dergisi, vol. 37–38, 2006, pp. 103–125. https://doi.org/10.1501/Tite_0000000063 Search in Google Scholar

Karataş, N. Sivas Mekteb-i İdadisi: Kuruluşu ve Tarihi Gelişimi. Master Thesis, Sivas: SCU Institute of Social Sciences, Department of History, 2021, pp. 28–44. Search in Google Scholar

Kodaman, B. Abdülhamid Devri Eğitim Sistemi. Ankara: Turkish History Association, 1991, pp. 119–123. Search in Google Scholar

Karaman, F. Salname-i Vilayet-i Sivas: Sivas, Amasya, Tokat, Karahisar-ı Şarki (1308/1890). İstanbul: Sivaslilar Education, Culture and Solidarity foundation, 2001. 53 p. Search in Google Scholar

Mutlu, N. Y. Sivas İ’dadisi /Sivas Lisesi (Osmanlı Devletinin 19. ve 20. Asırdaki Eğitim Hamlesi içinde Sivas’ın Yeri ve Sivas Lisesi’nin Başlangıcı ile Sivaslı Bir Öğretmenin Meslek Hayatı). Ankara: 2007, pp. 58–59. Search in Google Scholar

Mert, T. Kongre Günlerinde Sivas Sultanisi. Sultanşehir Kültür Sanat Dergisi, vol. 7 no. 17, summer 2013, pp. 38–45. Search in Google Scholar

Mert, T. Sivas Îdadîsi ve Sivas Sultanîsi‘nden Sivas Lisesine; Arşivde Yeni Bulunan Belgeler Lise’nin Temellerine Işık Tutuyor. Hayat Ağacı, vol. 14, 2009, pp. 43–56. Search in Google Scholar

Selvi, H. Sivas Kongresi: Türkiye Diyanete Vakfı İslam Ansiklopedisi. İstanbul: İSAM, vol. 37, 2009, pp. 284–285. [online, cited 01.08.2022]. https://islamansiklopedisi.org.tr/sivas-kongresi Search in Google Scholar

Sancaktar, F. M. Determinations About the Delegates of The Sivas Congress (4–11 September 1919). Turkish Journal of History, vol. 71, 2020, pp. 473–496. https://doi.org/10.26650/TurkJHist.2020.022 Search in Google Scholar

Duymaz, A. Ş. Osmanlı Modernleşmesinde Sivas’ta Bir Eğitim Kurumu: Sivas İdadisi. Proceedings of the Ottoman Era Sivas Symposium, May 21–25, 2007, Sivas, Turkey, vol. 3, Sivas: Sivas Governorship Publication, 2007, pp. 126–127. Search in Google Scholar

Denizli, H. Tarihi Sivas Kongre Binası Raporu. Unpublished report, KVKBK archive, 1986, pp. 1–2. Search in Google Scholar

Duymaz, A. Ş. ll. Abdülhamid Dönemi imar faaliyetleri (Türkiye örnekleri). Doctoral Thesis, Süleyman Demirel University, Institute of Social Sciences, Department of History, 2003, pp. 139–140. Search in Google Scholar

Özgüven, B. İdadi Binaları. Tarih ve Toplum Dergisi, vol. 82, 1990, pp. 44–47. Search in Google Scholar

Turkmen, K. Osmanlı’da Modern Eğitimin Günümüze Ulaşamayan Bir Temsilcisi: İnşa Süreci ve Mimari Detayları ile Kırşehir Mekteb-i İdadisi. Art-Sanat, vol. 17, 2022, pp. 529–550. https://doi.org/10.26650/artsanat.2022.17.893286 Search in Google Scholar

Özçınar, G. A. The Restoration Proposal of Kastamonu Mektebi Idadi Building. Master Thesis, Gazi University Institute of Scıence and Technology, Ankara, Turkey, 2006, pp. 124–136. Search in Google Scholar

Bulut, M. Sivas’taki Geç Dönem Osmanlı Kamu Yapıları. Master Thesis, Selcuk University, Institute of social sciences, Department of art history, Konya, Turkey, 2006. 197 p. Search in Google Scholar

Wikipedia, Sivas Lisesi, 2022 [online, cited 31.08.2022]. https://tr.wikipedia.org/wiki/Dosya:Sivas_Lisesi.jpg#/media/Dosya:Sivas_Lisesi.jpg. Search in Google Scholar

Saltresearch, Front facade of Sivas High School, 2022 [online]. Saltresearch [cited 31.08.2022]. https://archives.saltresearch.org/handle/123456789/114941?locale=en. Search in Google Scholar

Jenkins, R. X-ray fluorescence spectrometry (2nd edition). New York: Wiley Interscience, 1999. 232 p. Search in Google Scholar

Shackley, M. S. X-Ray Fluorescence (XRF): Applications in Archaeology. In: C. Smith (ed.), Encyclopedia of Global Archaeology, New York: Springer, 2014, pp. 7933–7938. https://doi.org/10.1007/978-1-4419-0465-2_1305 Search in Google Scholar

Pecchioni, E., Magrini, D., Cantisani, E., Fratini, F., Garzonio, C. A., Nosengo, C. Santo, A. P., Vettori, S. A Non-Invasive Approach for the Identification of “Red Marbles” from Santa Maria Del Fiore Cathedral (Firenze, Italy). International Journal of Architectural Heritage, vol. 15, no. 3, 2021, pp. 494–504. https://doi.org/10.1080/15583058.2019.1629045 Search in Google Scholar

Shackley, M. S., Dillian, C. Thermal and environmental effects on obsidian geochemistry: experimental and archaeological evidence. In: J.M. Loyd, T.M. Origer & D.A. Fredrickson (eds.), The effects of fire and heat on obsidian. Sacramento: Cultural resources publication, anthropology-fire history, U.S. Bureau of Land Management, 2002, pp. 117–134. Search in Google Scholar

Shackley, M. S. An introduction to X-ray fluorescence (XRF) analysis in archaeology. In: M.S. Shackley (ed.), X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York: Springer, 2011, pp. 7–44. Search in Google Scholar

Liritzis, I., Zacharias, N. Portable XRF of archaeological artefacts: current research potentials and limitations. In: S. Shackley (ed.), X Ray Flourescence Spectrometry in GeoArchaeology, Natural Sciences in Archaeology Series. North America: Springer 2010, pp. 109–142. Search in Google Scholar

Saverwyns, S., Currie, C., Lamas-Delgado, E. Macro X-ray fluorescence scanning (MA-XRF) as tool in the authentication of paintings. Microchemical Journal, vol. 137, 2018, pp. 139–147. https://doi.org/10.1016/j.microc.2017.10.008. Search in Google Scholar

Donais, M. K., Alrais, M., Konomi, K., George, D., Ramundt, W. H., Smith, E. Energy dispersive X-ray fluorescence spectrometry characterization of wall mortars with principal component analysis: Phasing and ex situ versus in situ sampling. Journal of Cultural Heritage, vol. 43, 2020, pp. 90–97. https://doi.org/10.1016/j.culher.2019.12.007 Search in Google Scholar

Trojek, T., Hložek, M. Confocal XRF imaging for determination of arsenic distribution in a sample of historic plaster. Radiation Physics and Chemistry, 2022, 110201. https://doi.org/10.1016/j.radphyschem.2022.110201 Search in Google Scholar

T. C. Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü [online]. MGM [cited 30.06.2021]. https://www.mgm.gov.tr Search in Google Scholar

Karaman, K., Erçıkdı, B., Cihangir, F., Kesimal, A. Examining the Schmidt Hammer Methods in Estimation of the Uniaxial Compressive Strength. Türkiye 22. Uluslararası Madencilik Kongresi ve Sergisi, 11–13 Mayıs 2011, Ankara [online, cited 01.08.2022]. https://www.researchgate.net/publication/267781874 Search in Google Scholar

Mohammed, D. A., Alshkane, Y. M., Hamaamin, Y. A. Reliability of empirical equations to predict uniaxial compressive strength of rocks using Schmidt hammer. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, vol. 14, no. 4, 2020, pp. 308–319. https://doi.org/10.1080/17499518.2019.1658881 Search in Google Scholar

Kong, F., Xue, Y., Qiu, D., Gong, H., Ning, Z. Effect of grain size or anisotropy on the correlation between uniaxial compressive strength and Schmidt hammer test for building stones. Construction and Building Materials, vol. 299, 2021, 123941. https://doi.org/10.1016/j.conbuildmat.2021.123941 Search in Google Scholar

Vasanelli, E., Colangiuli, D., Calia, A., Sbartaï, Z., Breysse, D. Combining noninvasive techniques for reliable prediction of soft stone strength in historic masonries. Constr. Build. Mater. vol. 146, 2017, pp. 744–754. https://doi.org/10.1016/j.conbuildmat.2017.04.146 Search in Google Scholar

Sy´kora, M., Diamantidis, D., Holicky´, M., Marková, J., Rózsás, Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Construction and Building Materials, vol. 193, 2018, pp. 196–210. https://doi.org/10.1016/j.conbuildmat.2018.10.180 Search in Google Scholar

Parsajoo, M., Armaghani, D. J., Mohammed, S. A., Khari, M., Jahandari, S. Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transportation Geotechnics, vol. 31, 2021, 100652. https://doi.org/10.1016/j.trgeo.2021.100652 Search in Google Scholar

Poblet, J., Bulnes, M., Uzkeda, H., Magán, M. Using the Schmidt hammer on folds: An example from the Cantabrian Zone (NW Iberian Peninsula). Journal of Structural Geology, vol. 155, 2022, 104512. https://doi.org/10.1016/j.jsg.2022.104512 Search in Google Scholar

Schmidt, E. A non-destructive concrete tester. Concrete, vol. 59, no. 8, 1951, pp. 34–35. Search in Google Scholar

Deere, D. U., Miller, P. R. Engineeeing Classification and Index Proporties For Intact Rock. Technical Report No. Afwl-Tr-65-116, New Mexico: Air Force Weapons Laboratory Research and Technology Division, 1966. 300 p. Search in Google Scholar

Clifton, J. R. Nondestructive Tests to Determine Concrete Strength – A Status Report. Washington: National Bureau of Standards, 1975. 42 p. Search in Google Scholar

De Beer, J. H. Subjective classification of the hardness of rocks and the associated shear strength. Proceedings of 4th reg. cong. Afr. soil mechanical found engineering, Cape Town, 1967, pp. 396–398. Search in Google Scholar

Selby, M. J. A r ock m ass s trength c lassification f or geomorphic purposes: with test from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 1980, vol. 24, pp. 31–51. Search in Google Scholar

ISRM. Rock characterization, testing and monitoring: ISRM suggested methods. In: E.T. Brown (ed.). Oxford: Pergamon Press, 1981, 211 p. Search in Google Scholar

Waltham, T. Foundations of Engineering Geology, 3nd Press, London and New York: Spon Press Taylor & Francis, 2009. 49 p. Search in Google Scholar

Saptono, S., Kramadibrata, S., Sulistianto, B. Using the Schmidt Hammer on Rock Mass Characteristic in Sedimentary Rock at Tutupan Coal Mine. Procedia Earth and Planetary Science. vol. 6, 2013, pp. 390–395. https://doi.org/10.1016/j.proeps.2013.01.051 Search in Google Scholar

Atkinson, R. H. Hardness Tests for Rock Characterization. In: J.A. Hudson (ed.), Comprehensive Rock Engineering, vol. 3: Rock testing and site characterization – Principles, practise and projects, Oxford: Pergamon Press, 1993, p. 107. Search in Google Scholar

Kumral, M., Şans, G., Yalçın, C., Kaya, M., Budakoğlu, M. The Effects of Physical And Chemical Properties On The Formation Of Historical Kufeki Stone In Catalca (Istanbul). Omer Halisdemir University Journal of Engineering Sciences, vol. 8, no. 1, 2019, pp. 278–287. Search in Google Scholar

Sert, M., Gürsoy, M., Arsoy, Z. Determination of Relations Between CaO, MgO and SiO2 Contents and Knoop Hardness Values of Natural Stones. Kafkas University Institute of Natural and Applied Science Journal, vol. 10, no. 2, 2017, pp. 162–171. Search in Google Scholar

Çobanoğlu, İ., Koralay, T., Kaya, A., Çelik, S. B. Investigation the Usability of Limestone Blocks in Karatepe Melange (Kaklık-Denizli) In Production of Concrete Aggregate. 6th İnternational Aggregate Symposium. Sivas, Turkey, October 6–7, 2011, pp. 215–223. Search in Google Scholar

Elçi, H., Türk, N., İşintek, İ. İzmir Karaburun Yarımadasındaki Farklı Kireçtaşlarının Beton Agregası Olarak Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, vol. 38, no. 2, 2014, pp. 103–134. Search in Google Scholar

Yılmaz, F., Koltka, S. ve Sabah, E. Emirdağ-Adaçal (Afyonkarahisar) Kireçtaşlarının Beton Agregaları Standardına Uygunluğunun Araştırılması. AKU-J. Sci. vol. 11, 2011, p. 015801 (1–12). Search in Google Scholar

Gözübol, A. M., Aysal, N. Cebeciköy Kireçtaşı Ocaklarında Litolojik ve Yapısal Kökenli İşletme Sınırları. İstanbul Yerbilimleri Dergisi, vol. 21, no. 1, 2008, pp. 25–35. Search in Google Scholar

Evcin, A., Ersoy, B., Uygunoğlu, T., Güneş, İ. The effect of different mineral additives on non-wettability and surface energy of epoxy floor coating. Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, 2018, pp. 581–590. https://doi.org/10.17341/gazimmfd.416368 Search in Google Scholar

Atılgan, İ. Investigation of The Effect of Particle Size of Limestone Added to Lignite on Emission Behaviour in A Fluidized Bed Combustion System. G.U. Journal of Science, vol. 17, no. 4, 2004, pp. 89–101. Search in Google Scholar

Gökay, K. M. Doğal Ortamda Bozuşmanın Kayaç Rengine Etkisi. Madencilik, vol. 42, no. 1, 2003, pp. 35–41. Search in Google Scholar

Akyol, A. A, Kadıoğlu, Y. K., Demirci, Ş. Archaeometrical Studies on Wall Paintings of Zeugma (Gaziantep) Ancient Siteabstract. Anadolu University Journal of Science and Technology –A Applied Sciences and Engineering, vol. 12, no. 1, 2011, pp. 37–56. Search in Google Scholar

Hofmann, M., Ragué Schleyer, P. Acid Rain: Ab Initio Investigation of the H2OSO3 Complex and Its Conversion into H2SO4. J. Am. Chem. Soc. vol. 116, 1994, pp. 4947–4952. https://doi.org/10.1021/ja00090a045 Search in Google Scholar

Fleig, D., Andersson, K., Normann, F., Johnsson, F. SO3 Formation under Oxyfuel Combustion Conditions. Ind. Eng. Chem. Res., 50, 2011, pp. 8505–8514. https://doi.org/10.1021/ie2005274 Search in Google Scholar

La Russa, M. F., Fermo, P., Comite, V., Belfiore, C. M., Barca, D., Cerioni, A., De Santis, M., Barbagallo, F. L., Ricca, M., Ruffolo, S. A. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Science of The Total Environment, vol. 593–594, 2017, pp. 297–309. https://doi.org/10.1016/j.scitotenv.2017.03.185 Search in Google Scholar

Belfiore, C. M., Barca, D., Bonazza, A., Comite, V., La Russa, M. F., Pezzino, A., Ruffolo, S. A., Sabbioni, C. Application of spectrometric analysis to the identification of pollution sources causing cultural heritage damage. Environ Sci Pollut Res, vol. 20, 2013, pp. 8848–8859. https://doi.org/10.1007/s11356-013-1810-y Search in Google Scholar

Camuffo, D., Del Monte, M. Sabbioni, C. Origin and growth mechanisms of the sulfated crusts on urban limestone. Water Air Soil Pollut., vol. 19, 1983, pp. 351–359. https://doi.org/10.1016/j.ibiod.2020.105031 Search in Google Scholar

Beadman, K., Scarrow, J. Laser Cleaning Lincoln Cathedral’s Romanesque Frieze. Journal of Architectural Conservation, vol. 4, no. 2, 1998, pp. 39–53. https://doi.org/10.1080/13556207.1998.10785215 Search in Google Scholar

Ruffolo, S. A., Comite, V., La Russa, M. F., Belfiore, C. M., Barca, D., Bonazza, A., Crisci, G.M., Pezzino, A., Sabbioni, C. An analysis of the black crusts from the Seville Cathedral: A challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Science of The Total Environment, vol. 502, 2015, pp. 157–166, https://doi.org/10.1016/j.scitotenv.2014.09.023 Search in Google Scholar

Comite, V., Ricca, M., Ruffolo, A. S., Graziano, F. S., Rovella, N., Rispoli, C., Gallo, C., Randazzo, L., Barca, D., Cappelletti, P., La Russa, M. F. Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy). Appl. Sci. vol. 10, no. 12, 2020, p. 4241. https://doi.org/10.3390/app10124241 Search in Google Scholar

Andreolli, M., Lampis, S., Bernardi, P., Calò, S., Vallini, G. Bacteria from black crusts on stone monuments can precipitate CaCO3 allowing the development of a new bio-consolidation protocol for ornamental stone. International Biodeterioration & Biodegradation, vol. 153, 2020. 105031. https://doi.org/10.1016/j.ibiod.2020.105031 Search in Google Scholar

Ortega-Morales, B. O., Gaylarde, C. C. Bioconservation of Historic Stone Buildings—An Updated Review. Applied Sciences. vol. 11, no. 12, 2021, p. 5695. https://doi.org/10.3390/app11125695 Search in Google Scholar

Comite, V., Miani, A., Ricca, M., La Russa, M., Pulimeno, M., Fermo, P. The impact of atmospheric pollution on outdoor cultural heritage: an analytic methodology for the characterization of the carbonaceous fraction in black crusts present on stone surfaces. Environmental Research, vol. 201, 2021, 111565. https://doi.org/10.1016/j.envres.2021.111565 Search in Google Scholar

Álvarez, F. F., Rodrýìguez, M. T., Espinosa, F. A. J., Dabán, A. G. Physical speciation of arsenic, mercury, lead, cadmium and nickel in inhalable atmospheric particles. Analytica Chimica Acta, vol. 524, no. 1–2, 2004, pp. 33–40. https://doi.org/10.1016/j.aca.2004.02.004 Search in Google Scholar

Councell, T. B., Duckenfield, K. U., Landa, E. R., Callender, E. Tire-wear particles as a source of zinc to the environment. Environmental Science and Technology, vol. 38, 2004, pp. 4206–4214. https://doi.org/10.1021/es034631f Search in Google Scholar

Geiger, A., Cooper, J. Overview of Airborne Metals Regulations, Exposure Limits, Health Effects, and Contemporary Research. Portland: Cooper Environmental Services. 2010. 56 p. Search in Google Scholar

Morajkar, P. P., Abdrabou, M. K., Raj, A., Elkadi, M., Stephen, S., Ali, M. I. Transmission of trace metals from fuels to soot particles: An ICP-MS and soot nanostructural disorder study using diesel and diesel/Karanja biodiesel blend. Fuel, vol. 280, 2020, 118631. https://doi.org/10.1016/j.fuel.2020.118631 Search in Google Scholar

Sumner, P., Nel, W. The effect of moisture on schmidt hammer rebound: Tests on rock samples from Marion Island and South Africa. Earth Surf. Proc. Landforms, vol. 27, 2002, pp. 1137–1142. https://doi.org/10.1002/esp.402 Search in Google Scholar

Standard test method for determination of rock hardness by rebound hammer method. ASTM 5873-05, 2019. 6 p. Search in Google Scholar

The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 20072014. In: R. Ulusay (ed.), Ankara: Kozan Offset Press, 2015. 306 p. Search in Google Scholar

Matthews, J.A., Winkler, S., Wilson, P. Age and origin of ice-cored moraines In Jotunheimen and Breheimen, Southern Norway: insights from Schmidt-Hammer exposure-age dating. Geografiska Annaler: Series A, Physical Geography, vol. 96, 2014, pp. 531–548. https://doi.org/10.1111/geoa.12046 Search in Google Scholar

Engineering geology field manual. U.S. Department of the Interior Bureau of Reclamation, Washington: US Government Printing Office, Second edition, vol. 1, 1998. 450 p. Search in Google Scholar

Katz, O., Rechesa, Z., Roegiersc, J. C. Evaluation of mechanical rock properties using a Schmidt hammer. Int. J. Rock. Mech. Min. Sci. vol. 37, no. 4, 2000, pp. 723–728. https://doi.org/10.1016/S1365-1609(00)00004-6 Search in Google Scholar

Kahraman, S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock. Mech. Min. Sci., vol. 38, no. 7, 2001, pp. 981–994. https://doi.org/10.1016/S1365-1609(01)00039-9 Search in Google Scholar

Fener, M., Kahraman, S., Bilgil, A., Gunaydin, O. A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock. Mech. Rock. Eng. vol. 38, no. 4, 2005, pp. 329–343. https://doi.org/10.1007/s00603-005-0061-8 Search in Google Scholar

Kılıç, A., Teymen, A. Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geol. Environ. vol. 67, 2008, pp. 237–244. https://doi.org/10.1007/s10064-008-0128-3 Search in Google Scholar

Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. vol. 68, no. 1, 2009, pp. 55–63. https://doi.org/10.1007/s10064-008-0172-z Search in Google Scholar

China NsotPsRo. Standard for engineering classification of rock masses (GB50218-94). Beijing: China Planning Press, 1995 [online, cited 01.08.2022]. https://www.codeofchina.com/standard/GB50218-1994.html Search in Google Scholar

Wang, H ., L in, H ., C ao, P. Correlation of UCS Rating with Schmidt Hammer Surface Hardness for Rock Mass Classification. Rock. Mech. Rock. Eng., vol. 50, 2017, pp. 195–203. https://doi.org/10.1007/s00603-016-1044-7 Search in Google Scholar

Teymen, A. Estimation of uniaxial compressive strength of very low-medium abrasive rocks from Cerchar abrasiveness index. Pamukkale Univ Muh Bilim Dergi, vol. 26, no. 6, 2020, pp. 1154–1163. Search in Google Scholar

Erözmen, T., Ündül, Ö., Aysal, N. Evaluation for the effects of different cleaning techniques applied on Küfeki Stones Used in historical buildings in İstanbul. Pamukkale University Journal of Engineering Sciences, vol. 26, no. 8, 2020, pp. 1413–1418. Search in Google Scholar

Şahin G üçhan, N ., Bilecen, K ., Warscheid, T., Topal, T., Son, Ç., Çıplak, E. S., Ersöz, T., Kaya, Y., Öztürk, M. Tarihi Kireçtaşlarını Koruma Müdahalelerinde Uygulamak Üzere Kalsit Üreten Bakterilerle Biyolojik Harç Geliştirilmesi. Master Thesis, Program Kodu: 1001, Proje No: 115M188, Middle East Technical University, Ankara, Turkey, 2019. 110 p. [online, cited 01.08.2022]. file:///C:/Users/AK00478/Downloads/TWpBek9UZzQ.pdf Search in Google Scholar

Ünal, M., Beyaz, T. Hasankeyf Kireçtaşlarının Suda Dağılmaya ve Tuz Kristalleşmesine Karşı Direncinin Araştırılması. Engineering Sciences, vol. 14, no. 2, 2019, pp. 55–62. Search in Google Scholar

Şahin, M. Nokta Yükü Dayanım İndeksinin Yarılanmış Karot Örneklerinden Belirlenebilirliğinin Araştırılması. Master Thesis, Hacettepe University, Department of Geological Engineering, 2018. 42 p. [online, cited 01.08.2022]. http://www.openaccess.hacettepe.edu.tr:8080/xmlui/bitstream/handle/11655/4489/10189572.pdf?sequence=1&isAllowed=n Search in Google Scholar

Koç, E., Demir Şahin, D., Yılmaz, A. O. Examination of Indirect Tensile and Point Load Strength on Different Originated Rock Samples Taken Between Trabzon-Maçka Areas. ROCKMEC’2014-XI th Regional Rock Mechanics Symposium, Afyonkarahisar, Turkey, May 7–9, 2014 [online, cited 01.08.2022]. http://www.rocknet-japan.org/events-announcement/419/ Search in Google Scholar

Karaman, K., Kesimal, A. Kayaçların Tek Eksenli Basınç Dayanımı Tahmininde Nokta Yükü Deney Yöntemleri ve Porozitenin Değerlendirilmesi. Madencilik, vol. 51, no. 4, 2012, pp. 3–14. Search in Google Scholar

Dipova, N. Investigation of the Relationships Between Abrasiveness and Strength Properties of Weak Limestones Along a Tunnel Route. Jeoloji Mühendisliği Dergisi, vol. 36, no. 1, 2012, pp. 23–34. Search in Google Scholar

Tüysüz, L. İstanbul’da Açılacak Metro Tünellerinde Tbm (Tünel Açma Makinesi) Performansını Tahmin Etmek İçin Yeni Bir Yaklaşım. Master Thesis, Istanbul Technical University, Graduate School of Natural and Applied Sciences, Department of Mining Engineering, 2012. 19 p. Search in Google Scholar

Karaman, K., Kesimal, A. Evaluation of the Relationship between Uniaxial Compressive Strength and Ultrasonic Pulse Velocity of Rocks. Journal of Underground Resources, vol. 2, no. 4, 2013, pp. 9–17. Search in Google Scholar

Ocak, İ. Tek Eksenli Basınç Dayanımını Kullanarak Kaya Malzemesinin Elastisite Modülünün Tahmini. İstanbul Yerbilimleri Dergisi, vol. 21, no. 2, 2008, pp. 91–97. Search in Google Scholar

eISSN:
2255-8764
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Architecture and Design, Architecture, Urbanism, other