1. bookVolume 30 (2022): Edition 2 (May 2022)
Détails du magazine
License
Format
Magazine
eISSN
1844-0835
Première parution
17 May 2013
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Algebraic Heun Operators with Tetrahedral Monodromy

Publié en ligne: 02 Jun 2022
Volume & Edition: Volume 30 (2022) - Edition 2 (May 2022)
Pages: 209 - 230
Reçu: 18 Oct 2021
Accepté: 21 Dec 2021
Détails du magazine
License
Format
Magazine
eISSN
1844-0835
Première parution
17 May 2013
Périodicité
1 fois par an
Langues
Anglais
Abstract

Our work adds to the picture of second order differential operators with a full set of algebraic solutions, which we will call algebraic. We see algebraic Heun operators as pull-backs of algebraic hypergeometric operators via Belyi functions. We focus on the case when the hypergeometric one has a tetrahedral monodromy group. We find arithmetic conditions for the pull-back functions to exist. For each distribution of the singular points in the ramified fibers, we identify the minimal values of the exponent differences and we explicitly construct the dessin d’enfant corresponding to the pull-back function in the minimal cases. Then by allowing some parameters to vary, we find infinite families of such graphs, hence of Heun operators with tetrahedral monodromy.

Keywords

MSC 2010

[1] Baldassari F., Dwork B.: On second order linear differential equations with algebraic solutions, Am. J. Math. 101, (1979) 42 - 76. Search in Google Scholar

[2] Beukers F.: Gauss Hypergeometric Function, published in Arithmetic and Geometry Around Hypergeometric Functions. Lecture Notes of a CIMPA Summer School, Galatasaray University, Istanbul, 2005. Search in Google Scholar

[3] Beukers F., van der Waall A.: Lamé equations with algebraic solutions, J. Differ. Equ. 197, (2004) 125. Search in Google Scholar

[4] Bouquet J.-C., Briot C. A.: Étude des fonctions d’une variable imaginaire, Journal de l’École Polytechnique, 21, (1856) 85 - 132. Search in Google Scholar

[5] Bouquet J.-C., Briot C. A.: Recherches sur les propriétés des fonctions définies par des équations différentielles, Journal de l’École Polytechnique, 21, (1856) 133 - 198. Search in Google Scholar

[6] Chiarellotto B.: On Lamé operators which are pull-backs of hypergeometric ones, Trans. Am. Math. Soc, Volume 347 Number 8, (1995) 2753-2780. Search in Google Scholar

[7] Decarreau A., Dumont - Lepage, Pascal Maroni M.-C., Robert A., Ronveaux A.: Formes canoniques des équations confluentes de l’équation de Heun, Ann. Soc. Sci. Bruxelles 92, (1978) 53-78. Search in Google Scholar

[8] Gray J.J.: Fuchs and the Theory of Differential Equations, Bull. Amer. Math. Soc. (N.S.), Volume 10 Number 1, 1-26 (1984). Search in Google Scholar

[9] Girondo E., Gonzáles - Diez G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants. Cambridge University Press, London Mathematical Society Student Texts 79 (2012). ISBN 978-0521740227. Search in Google Scholar

[10] Grothendieck A.: Esquisee d’un Programme, (1984). Search in Google Scholar

[11] van Hoeij M., Vidūnas R.: Belyi functions for hyperbolic hypergeometric - to - Heun transformations, Journal of Algebra, volume 441 (2015), 609 - 659. Search in Google Scholar

[12] Klein C.F.: Ueber lineare Differentialgleichungen, Mathematische Annalen 12, (1877) 167 - 179.10.1007/BF01442656 Search in Google Scholar

[13] Kummer E.K.:Über die hypergeometrische Reihe, Journal für die reine und angewandte Mathematik, XV, (1836), 39-83, 127-172. Search in Google Scholar

[14] Lando S.K., Zvonkin A.K.: Graphs on Surfaces and their Applications. Springer-Verlag Berlin Heidelberg, Encyclopaedia of Mathematical Sciences 141 (2004). ISBN 978-3-540-38361-1 Search in Google Scholar

[15] Liţcanu R.: Counting Lamé Differential Operators, Rendiconti del Seminario Matematico della Universitá di Padova, 107, (2002) 93 - 116. Search in Google Scholar

[16] Liţcanu R.: Lamé operators with finite monodromy - a combinatorial approach, J. Differ. Equ., 207, (2004) 93 - 116. Search in Google Scholar

[17] Liţcanu R.: Proprieétés du degré des morphismes de Belyi, Monatshefte für Mathematik, 142 (2004), 327340.10.1007/s00605-003-0142-2 Search in Google Scholar

[18] Liţcanu R.: Some remarks on a conjecture of Dwork, Riv. Mat. Univ. Parma (7), 3* (2004), 245-252. Search in Google Scholar

[19] Liţcanu R., Pleşca, I.-C.: Second Order Differential Operators with Algebraic Solutions, to be published. Search in Google Scholar

[20] Maier R.: The 192 solutions of the Heun equation, Math. Comput. 76, (2007) 811-843. Search in Google Scholar

[21] Maier R.: On reducing the Heun equation to the hypergeometric equation, J. Differ. Equ., 213, (2005) 171203. Search in Google Scholar

[22] Poole E.G.C.: Introduction to the Theory of Linear Differential Equations. Oxford at the Clarendon Press (1936). Search in Google Scholar

[23] Riemann G.F.B.: Beiträge zur Theorie der durch die Gausssche Reihe F (α, β, γ, x) darstellbaren Functionen, Abhandlungen der Kniglichen Gesellschaft der Wissenschaften zu Gttingen, 7, (1857) 67 - 83. Search in Google Scholar

[24] Riemann G. F. B.: Theorie der Abelschen Functionen, Journal fr die reine und angewandte Mathematik, 54, (1857) 101 - 155. Search in Google Scholar

[25] Schwarz H.A.: Ueber diejenigen Flle, in welchen die Gaussische hyper-geometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, Journal für die reine und angewandte Mathematik 75, (1857) 292 - 335. Search in Google Scholar

[26] Leila Schneps (editor): The Grothendieck Theory of Dessins d’Enfants, Cambridge University Press, 1994,10.1017/CBO9780511569302 Search in Google Scholar

[27] Vidūnas R., Filipuk G.: A classification of coverings yielding Heun-to-hypergeometric reductions, Osaka J. Math. Volume 51, Number 4, (2014) 867 - 905. Search in Google Scholar

[28] Vidūnas R.: Degenerate and dihedral Heun functions with parameters, Hokkaido Math. J., Volume 45, Number 1, (2016) 93-108. Search in Google Scholar

[29] van der Waall, Alexa: Lamé Equations with Finite Monodromy, PHD Thesis, Utrecht University (2002). Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo